We have recently introduced a silicon substrate for high-sensitivity microarrays, coated with a functional polymer named copoly(DMA-NAS-MAPS). The silicon dioxide thickness has been optimized to produce a fluorescence intensification due to the optical constructive interference between the incident and reflected lights of the fluorescent radiation. The polymeric coating efficiently suppresses aspecific interaction, making the low background a distinctive feature of these slides. Here, we used the new silicon microarray substrate for allergy diagnosis, in the detection of specific IgE in serum samples of subjects with sensitizations to inhalant allergens. We compared the performance of silicon versus glass substrates. Reproducibility data were measured. Moreover, receiver-operating characteristic (ROC) curves were plotted to discriminate between the allergy and no allergy status in 30 well-characterized serum samples. We found that reproducibility of the microarray on glass supports was not different from available data on allergen arrays, whereas the reproducibility on the silicon substrate was consistently better than on glass. Moreover, silicon significantly enhanced the performance of the allergen microarray as compared to glass in accurately identifying allergic patients spanning a wide range of specific IgE titers to the considered allergens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-010-4077-x | DOI Listing |
RSC Adv
January 2025
V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
Detecting small concentrations of nitro-compounds surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Physical Science and Technology, Xinjiang University 666 Shengli Road Urumqi 830046 China
This study has successfully prepared three kinds of surface enhanced raman scattering (SERS) substrates, namely AgNP/CuNPs/Bragg-PSi (porous silicon, PSi), AgNPs/CuNPs/PSi and AuNPs/CuNPs/Bragg-PSi by use of an anode electrochemical etching method and a dip plating method. Results show that: the AgNPs/CuNPs/Bragg-PSi substrate has optimal SERS performance and is capable of detecting the Raman spectrum ( = 0.9315) of a 10 M-10 M crystal violet (CV) solution.
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Technology, Dong Nai Technology University, 206 Nguyen Khuyen, Trang Dai Ward, Bien Hoa City, Dong Nai 76000, Vietnam.
Surface-enhanced Raman scattering (SERS) represents a compelling detection methodology centered on the electromagnetic fields, commonly termed "hot spots", generated around noble nanoparticles. Nonetheless, the efficacy of electromagnetic field (EMF) amplification is constrained when utilizing individual nanoparticles. There has been a notable lack of experimental and theoretically simulated studies regarding the increase of the electromagnetic field when gold nanorods with different aspect ratios undergo self-assembly in either perpendicular or parallel orientations to substrates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
Biosensors play a critical role in modern diagnostics, offering high sensitivity and specificity for detecting various relevant clinical analytes as well as real-time monitoring and integrability in point-of-care (POC) platforms and wearable/implantable devices. Among the numerous materials used as biosensing substrates, porous silicon (pSi) has garnered significant attention due to its tunable properties, ease of fabrication, large surface area, and versatile surface chemistry. These attributes make pSi an ideal platform for transducer development, particularly in the fabrication of optical and electrochemical biosensors.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Electronic Engineering, Soongsil University, Seoul, 06938, South Korea.
Recent advances in mass transfer technology are expected to bring next-generation micro light-emitting diodes (µLED) displays into reality, although reliable integration of the active-matrix backplane with the transferred µLEDs remains as a challenge. Here, the µLED display technology is innovated by demonstrating pixel circuit-integrated micro-LEDs (PIMLEDs) and integrating them onto a transparent glass substrate. The PIMLED comprises of low-temperature poly-silicon transistors and GaN µLED.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!