Unlabelled: Multiple sclerosis (MS) is an inflammatory, demyelinating disease that can affect several areas of the central nervous system. Damage along the auditory pathway can alter its integrity significantly. Therefore, it is important to investigate the auditory pathway, from the brainstem to the cortex, in individuals with MS.

Objective: The aim of this study was to characterize auditory evoked potentials in adults with MS of the remittent-recurrent type.

Method: The study comprised 25 individuals with MS, between 25 and 55 years, and 25 age- and gender-matched healthy controls (research and control groups). Subjects underwent audiological and electrophysiological evaluations.

Results: Statistically significant differences were observed between the groups regarding the results of the auditory brainstem response and the latency of the Na and P300 waves.

Conclusion: Individuals with MS present abnormalities in auditory evoked potentials indicating dysfunction of different regions of the central auditory nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s0004-282x2010000400010DOI Listing

Publication Analysis

Top Keywords

auditory evoked
12
evoked potentials
12
multiple sclerosis
8
nervous system
8
auditory pathway
8
auditory
7
potentials multiple
4
sclerosis unlabelled
4
unlabelled multiple
4
sclerosis inflammatory
4

Similar Publications

Silent Hearing Loss in Kidney Transplant Patients Receiving Tacrolimus: A Fact or a Myth?

Indian J Nephrol

June 2024

Mansoura Nephrology and Dialysis Unit, Department of Internal Medicine, Mansoura, Egypt.

Background: It has been claimed that tacrolimus may have harmful effects on the auditory system, where it has been linked to ototoxicity and sensorineural hearing loss (SNHL). We evaluated silent SNHL in kidney transplant recipients (KTRs) receiving tacrolimus and the different factors affecting it compared to healthy controls.

Materials And Methods: In this case control study, hearing functions were studied in 42 KTRs receiving tacrolimus as maintenance immunosuppressive therapy for more than 3 months in comparison to 27 age- and gender-matched healthy subjects using tympanometry, pure-tone audiometry (PTA), extended high frequency audiometry (EHFA), and transient evoked oto-acoustic emissions (TEOAEs).

View Article and Find Full Text PDF

Listeners with hearing loss have trouble following a conversation in multitalker environments. While modern hearing aids can generally amplify speech, these devices are unable to tune into a target speaker without first knowing to which speaker a user aims to attend. Brain-controlled hearing aids have been proposed using auditory attention decoding (AAD) methods, but current methods use the same model to compare the speech stimulus and neural response, regardless of the dynamic overlap between talkers which is known to influence neural encoding.

View Article and Find Full Text PDF

Functional and Structural Changes in the Inner Ear and Cochlear Hair Cell Loss Induced by Hypergravity.

Int J Mol Sci

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.

Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.

View Article and Find Full Text PDF

Distraction is ubiquitous in human environments. Distracting input is often predictable, but we do not understand when or how humans can exploit this predictability. Here, we ask whether predictable distractors are able to reduce uncertainty in updating the internal predictive model.

View Article and Find Full Text PDF

Normative Values of Brainstem Auditory-Evoked Responses in Sheep.

Brain Sci

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.

The brainstem auditory-evoked response (BAER) is an established electrophysiological measure of neural activity from the auditory nerve up to the brain stem. The BAER is used to diagnose abnormalities in auditory pathways and in neurophysiological human and animal research. However, normative data for BAERs in sheep, which represent an adequate large animal model for translational and basic otological research, are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!