The kappa-opioid receptor (KOR), a member of the opioid receptor family, is widely expressed in the central nervous system and peripheral tissues. Substantial evidence has shown that activation of KOR by agonists and endogenous opioid peptides in vivo may produce a strong analgesic effect that is free from the abuse potential and the adverse side effects of mu-opioid receptor (MOR) agonists, such as morphine. In addition, activation of the KOR has also been shown to exert an inverse effect on morphine-induced adverse actions, such as tolerance, reward, and impairment of learning and memory. Therefore, the KOR has received much attention in the effort to develop alternative analgesics to MOR agonists and agents for the treatment of drug addiction. However, KOR agonists also produce several severe undesirable side effects such as dysphoria, water diuresis, salivation, emesis, and sedation in nonhuman primates, which may limit the clinical utility of KOR agonists for pain and drug abuse treatment. This article will review the role of KOR activation in mediating antinociception and addiction. The possible therapeutic application of kappa-agonists in the treatment of pain and drug addiction is also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002313PMC
http://dx.doi.org/10.1038/aps.2010.138DOI Listing

Publication Analysis

Top Keywords

kor agonists
12
kappa-opioid receptor
8
activation mediating
8
mediating antinociception
8
antinociception addiction
8
activation kor
8
side effects
8
mor agonists
8
drug addiction
8
pain drug
8

Similar Publications

Molecular mechanisms of inverse agonism via κ-opioid receptor-G protein complexes.

Nat Chem Biol

January 2025

The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.

Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.

View Article and Find Full Text PDF

The endogenous dynorphin/kappa opioid receptor (KOR) system in the brain mediates the dysphoric effects of stress, and KOR antagonists may have therapeutic potential for the treatment of drug addiction, depression, and psychosis. One class of KOR antagonists, the long-acting norBNI-like antagonists, have been suggested to act by causing KOR inactivation through a cJun-kinase mechanism rather than by competitive inhibition. In this study, we screened for other opioid ligands that might produce norBNI-like KOR inactivation and found that nalfurafine (a G-biased KOR agonist) and nalmefene (a KOR partial agonist) also produce long-lasting KOR inactivation.

View Article and Find Full Text PDF

GPR88 impairs the signaling of kappa opioid receptors in a heterologous system and in primary striatal neurons.

Neuropharmacology

March 2025

Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain. Electronic address:

Article Synopsis
  • GPR88 is an orphan G protein-coupled receptor primarily found in the striatum, and its function is not well understood despite changes in its expression seen in Parkinson's disease models.
  • GPR88 was found to interact with the kappa-opioid receptor (KOR), and this interaction inhibits KOR-mediated signaling, as evidenced by experiments showing that GPR88 can modulate effects of KOR agonists in both cultured cells and primary striatal neurons.
  • The GPR88-KOR complexes were more common in specific neurons related to dopamine pathways, suggesting that understanding their relationship could have implications for conditions like neuropathic pain, Parkinson's disease, and neuropsychiatric disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Targeted drug delivery to specific brain areas is difficult due to the complex differences in neuron types and functions.
  • A new miniaturized implantable system allows for precise drug administration, enabling adjustments to therapies in real-time.
  • Activating kappa opioid receptors in a specific brain region can create positive or negative responses, highlighting the importance of accuracy in drug delivery for potential therapies.
View Article and Find Full Text PDF

Preclinical evaluation of abuse potential of the peripherally-restricted kappa opioid receptor agonist HSK21542.

Regul Toxicol Pharmacol

December 2024

Saifu Laboratories Co., Ltd., Beijing, China; SAFE Medical Technology Co., Ltd., Hebei, China. Electronic address:

Article Synopsis
  • HSK21542 is a kappa opioid receptor (KOR) agonist designed for pain relief and has been assessed for its potential for abuse prior to approval.
  • The preclinical studies involved various tests in rats, including self-administration, drug discrimination, conditioned place preference, and withdrawal assessments, to evaluate its reinforcing effects and dependence potential.
  • Results indicated that HSK21542 showed no behavioral signs of abuse or dependence, suggesting it has a low potential for abuse in humans.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!