The kappa-opioid receptor (KOR), a member of the opioid receptor family, is widely expressed in the central nervous system and peripheral tissues. Substantial evidence has shown that activation of KOR by agonists and endogenous opioid peptides in vivo may produce a strong analgesic effect that is free from the abuse potential and the adverse side effects of mu-opioid receptor (MOR) agonists, such as morphine. In addition, activation of the KOR has also been shown to exert an inverse effect on morphine-induced adverse actions, such as tolerance, reward, and impairment of learning and memory. Therefore, the KOR has received much attention in the effort to develop alternative analgesics to MOR agonists and agents for the treatment of drug addiction. However, KOR agonists also produce several severe undesirable side effects such as dysphoria, water diuresis, salivation, emesis, and sedation in nonhuman primates, which may limit the clinical utility of KOR agonists for pain and drug abuse treatment. This article will review the role of KOR activation in mediating antinociception and addiction. The possible therapeutic application of kappa-agonists in the treatment of pain and drug addiction is also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002313 | PMC |
http://dx.doi.org/10.1038/aps.2010.138 | DOI Listing |
Nat Chem Biol
January 2025
The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.
View Article and Find Full Text PDFThe endogenous dynorphin/kappa opioid receptor (KOR) system in the brain mediates the dysphoric effects of stress, and KOR antagonists may have therapeutic potential for the treatment of drug addiction, depression, and psychosis. One class of KOR antagonists, the long-acting norBNI-like antagonists, have been suggested to act by causing KOR inactivation through a cJun-kinase mechanism rather than by competitive inhibition. In this study, we screened for other opioid ligands that might produce norBNI-like KOR inactivation and found that nalfurafine (a G-biased KOR agonist) and nalmefene (a KOR partial agonist) also produce long-lasting KOR inactivation.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain. Electronic address:
Neuroscience
December 2024
Department of Psychiatry, Harvard Medical School, Basic Neuroscience Division, McLean Hospital, Boston, MA, USA.
Regul Toxicol Pharmacol
December 2024
Saifu Laboratories Co., Ltd., Beijing, China; SAFE Medical Technology Co., Ltd., Hebei, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!