In this paper, a comparison is provided between liquid-liquid and liquid-solid partitioning systems applied to the removal of high concentrations of 4-nitrophenol. The target compound is a typical representative of substituted phenols found in many industrial effluents while the biomass was a mixed culture operating as a conventional Sequencing Batch Reactor and acclimatized to 4-nitrophenol as the sole carbon source. Both two-phase systems showed enhanced performance relative to the conventional single phase bioreactor and may be suitable for industrial application. The best results were obtained with the polymer Hytrel which is characterized by higher partition capability in comparison to the immiscible liquid solvent (2-undecanone) and to the polymer Tone™. A model of the two systems was formulated and applied to evaluate the relative magnitudes of the reaction, mass transfer and diffusion characteristic times. Kinetic parameters for the Haldane equation, diffusivity and mass transfer coefficients have been evaluated by data fitting of batch tests for liquid-liquid and liquid-solid two phase systems. Finally, preliminary results showed the feasibility of polymer regeneration to facilitate polymer reuse by an extended contact time with the biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2010.922 | DOI Listing |
Int J Biol Macromol
January 2025
Wuhan Third hospital, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuhan 430060, China. Electronic address:
Parkinson's disease (PD), a neurodegenerative disorder without cure, is characterized by the pathological aggregation of α-synuclein (α-Syn) in Lewy bodies. Classic deposition pathway and condensation pathway contribute to α-Syn aggregation, and liquid-liquid phase separation is the driving force for condensate formation, which subsequently undergo liquid-solid phase separation to form toxic fibrils. Traditional Chinese Medicine (TCM) has a long history in treating neurodegenerative disease; herein, we identified chemicals from herbs that inhibit α-Syn aggregation.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Institute of Molecular Embryology and Genetics (IMEG), Department of Genomic Neurology, Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan. Electronic address:
Tau aggregation is a defining feature of neurodegenerative tauopathies, including Alzheimer's disease, corticobasal degeneration, and frontotemporal dementia. This aggregation involves the liquid-liquid phase separation (LLPS) of Tau, followed by its sol-gel phase transition, representing a crucial step in aggregate formation both in vitro and in vivo. However, the precise cofactors influencing Tau phase transition and aggregation under physiological conditions (e.
View Article and Find Full Text PDFLangmuir
November 2024
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States.
The home and personal care industry is evolving toward more sustainable and environmentally friendly ingredients. Rinse-off personal care products rely on formation of polymer-surfactant complexes to drive deposition of benefit agents (e.g.
View Article and Find Full Text PDFACS Omega
October 2024
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
Metallic liquids under confinement exhibit different properties compared to those of their corresponding bulk phases, such as miscibility, diffusion, and phase transitions. Unfortunately, the challenges in experimentally characterizing Fe-Ni liquids at the nanoscale and the high cost of first-principles simulations hindered the atom-level understanding that is necessary for controlling Fe-Ni liquids. Here, we report a comprehensive molecular dynamics study of the liquid Fe-Ni alloy confined within nanoslits.
View Article and Find Full Text PDFNat Commun
October 2024
School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!