Extracellular adenosine and adenosine receptors are critically involved in various inflammatory pathways. Adenosine receptor A1 (A1AR) has been implicated in mediating transmigration of leukocytes to sites of inflammation. This study was designed to characterize the role of A1AR in a murine model of LPS-induced lung injury. LPS-induced transmigration of polymorphonuclear cells (PMNs) and microvascular permeability was elevated in A1AR(-/-) mice. Pretreatment of wild-type mice with the specific A1AR agonist 2'Me-2-chloro-N6-cyclopentyladenosine attenuated PMN accumulation in the interstitium and alveolar space as well as microvascular permeability. Lower PMN counts in the lungs of pretreated wild-type mice were associated with reduced amounts of the chemotactic cytokines TNF-α, IL-6, and CXCL2/3 in the bronchoalveolar lavage. Pretreatment was only effective when A1AR was expressed on hematopoietic cells as demonstrated in chimeric mice. These findings were confirmed by in vitro transmigration assays demonstrating that chemokine-induced transmigration of PMNs was reduced when PMNs but not when pulmonary endothelial or alveolar epithelial cells were pretreated. 2'Me-2-chloro-N6-cyclopentyladenosine prevented pulmonary endothelial but not epithelial cells from LPS-induced cellular remodeling and cell retraction. Our data reveal what we believe to be a previously unrecognized distinct role of A1AR for PMN trafficking and endothelial integrity in a model of acute lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1000433DOI Listing

Publication Analysis

Top Keywords

microvascular permeability
12
lung injury
12
adenosine receptor
8
role a1ar
8
wild-type mice
8
pulmonary endothelial
8
epithelial cells
8
a1ar
5
adenosine
4
receptor regulates
4

Similar Publications

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an αβ-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC αβ-heterodimer in human pericytes.

View Article and Find Full Text PDF

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.

View Article and Find Full Text PDF

Pterostilbene protects against lipopolysaccharide-induced inflammation and blood-brain barrier disruption in immortalized brain endothelial cell lines in vitro.

Sci Rep

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!