Background: Detection of circulating cell-free fetal nucleic acids in maternal plasma has been used in noninvasive prenatal diagnostics. Most applications rely on the qualitative detection of fetal nucleic acids to determine the genetic makeup of the fetus. This method leads to an analytic dilemma, because test results from samples that do not contain fetal DNA or are contaminated with maternal cellular DNA can be misleading. We developed a multiplex approach to analyze regions that are hypermethylated in placenta relative to maternal blood to evaluate the fetal portion of circulating cell-free DNA isolated from maternal plasma.
Methods: The assay used methylation-sensitive restriction enzymes to eliminate the maternal (unmethylated) fraction of the DNA sample. The undigested fetal DNA fraction was then coamplified in the presence of a synthetic oligonucleotide to permit competitive PCR. The amplification products were quantified by single-base extension and MALDI-TOF MS analysis.
Results: Using 2 independent markers, (sex determining region Y)-box 14 (SOX14) and T-box 3 (TBX3), we measured a mean of 151 copies of fetal DNA/mL plasma and a mean fetal fraction of 0.13 in samples obtained from pregnant women. We investigated 242 DNA samples isolated from plasma from pregnant and nonpregnant women and observed an analytical sensitivity and specificity for the assay of 99% and 100%, respectively.
Conclusions: By investigating several regions in parallel, we reduced the measurement variance and enabled quantification of circulating cell-free DNA. Our results indicate that this multiplex methylation-based reaction detects and quantifies the amount of fetal DNA in a sample isolated from maternal plasma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1373/clinchem.2010.146290 | DOI Listing |
Mater Today Bio
February 2025
Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China.
Gastric cancer (GC) is a formidable adversary in the field of oncology. The low early diagnosis rate of GC results in a low overall survival rate. Therefore, early accurate diagnosis and effective treatment are the key to reduce the mortality of GC.
View Article and Find Full Text PDFInt J Reprod Biomed
November 2024
Department of Obstetrics and Gynecology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Background: Noninvasive perinatal testing is a new method of screening for aneuploidy called cell-free DNA (cfDNA). Fetal fraction (FF) plays a crucial role in assessing the reliability of aneuploidy detection through noninvasive perinatal testing.
Objective: We aimed to investigate the association between the amount of FF in cfDNA testing and adverse pregnancy outcomes.
Environ Pollut
January 2025
Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR; Arkansas Children's Nutrition Center, Little Rock, AR.
The placenta is crucial for fetal development, is affected by PFAS toxicity, and evidence is accumulating that gestational PFAS perturb the epigenetic activity of the placenta. Gestational PFAS exposure can adversely affect offspring, yet individual and cumulative impacts of PFAS on the placental epigenome remain underexplored. Here, we conducted an epigenome-wide association study (EWAS) to examine the relationships between placental PFAS levels and DNA methylation in a cohort of mother-infant dyads in Arkansas (N=151).
View Article and Find Full Text PDFNutrients
January 2025
Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Food Science & Technology, Seoul Women's University, Seoul 01797, Republic of Korea.
Titanium dioxide (TiO), a white color food additive, is widely used in bakery products, candies, chewing gums, soups, and creamers. Concerns about its potential genotoxicity have recently emerged, particularly following the European Union's ban on its usage as a food additive due to its genotoxicity potential. Conflicting in vitro and in vivo results regarding its genotoxicity highlight the need for further in-depth investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!