We introduce the Movement Deviation Profile (MDP), which is a single curve showing the deviation of an individual's movement from normality. Joint angles, recorded from typically developing children over one gait cycle, were used to train a self-organizing map (SOM) which then generated MDP curves for patients with gait problems. The mean MDP over the gait cycle showed a high correlation (r(2) = .927) with the Gait Deviation Index (GDI), a statistically significant difference between groups of patients with a range of functional levels (Gillette Functional Assessment Questionnaire Walking Scale 7-10) and a trend of increasing values for patients with cerebral palsy through hemiplegia I-IV, diplegia, triplegia, and quadriplegia. The small difference between the MDP and GDI can be explained by the SOM's method of operation comparing biomechanical patterns to the nearest abstract reference pattern, and its flexibility to compensate for temporal shifts in movement data. The MDP is an alternative method of processing complex biomechanical data, potentially supporting clinical interpretation. The electronic addendum accompanying this article is a standalone program, which can be used to calculate the MDP from gait data, and can also be used in other applications where the deviation of multi-channel temporal data from a reference is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humov.2010.06.003 | DOI Listing |
Acc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neurology, RWTH Aachen University, Aachen, Germany.
Background: Friedreich ataxia is a rare neurodegenerative disorder caused by frataxin deficiency. Both underweight and overweight occur in mitochondrial disorders, each with adverse health outcomes. We investigated the longitudinal evolution of anthropometric abnormalities in Friedreich ataxia and the hypothesis that both weight loss and weight gain are associated with faster disease progression.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Civil Engineering, Xiangtan University, Xiangtan 411105, China.
Bridge expansion joints are critical components that accommodate the movement of a bridge caused by temperature fluctuations, concrete shrinkage, and vehicular loads. Analyzing the spatiotemporal deformation of these expansion joints is essential for monitoring bridge safety. This study investigates the deformation characteristics of Hongtang Bridge in Fuzhou, China, using synthetic aperture radar interferometry (InSAR).
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Air Traffic Management, Civil Aviation Flight University of China, Guanghan 618307, China.
To address the issue of safe, orderly, and efficient operation for unmanned vehicles within the apron area in the future, a hardware framework of aircraft-vehicle-airfield collaboration and a trajectory planning method for unmanned vehicles on the apron were proposed. As for the vehicle-airfield perspective, a collaboration mechanism between flight support tasks and unmanned vehicle departure movement was constructed. As for the latter, a control mechanism was established for the right-of-way control of the apron.
View Article and Find Full Text PDFNutrients
January 2025
Graduate Program in Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404, Taiwan.
(1) Background: Carbohydrate mouth rinsing (CMR) stimulates the central nervous system and improves motor control. However, no studies have examined the effects of CMR on softball batting performance. The purpose of this study was to investigate the effect of CMR on softball batting performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!