Non-homogeneous liver distribution of photosensitizer and its consequence for photodynamic therapy outcome.

Photodiagnosis Photodyn Ther

Instituto de Física de São Carlos, Universidade de São Paulo, Av Trabalhador São-carlense, 400, CEP 13566-590, São Carlos, SP, Brazil.

Published: September 2010

Background: Photodynamic therapy is mainly used for treatment of malignant lesions, and is based on selective location of a photosensitizer in the tumor tissue, followed by light at wavelengths matching the photosensitizer absorption spectrum. In molecular oxygen presence, reactive oxygen species are generated, inducing cells to die. One of the limitations of photodynamic therapy is the variability of photosensitizer concentration observed in systemically photosensitized tissues, mainly due to differences of the tissue architecture, cell lines, and pharmacokinetics. This study aim was to demonstrate the spatial distribution of a hematoporphyrin derivative, Photogem, in the healthy liver tissue of Wistar rats via fluorescence spectroscopy, and to understand its implications on photodynamic response.

Methods: Fifteen male Wistar rats were intravenously photosensitized with 1.5mg/kg body weight of Photogem. Laser-induced fluorescence spectroscopy at 532 nm-excitation was performed on ex vivo liver slices. The influence of photosensitizer surface distribution detected by fluorescence and the induced depth of necrosis were investigated in five animals.

Results: Photosensitizer distribution on rat liver showed to be greatly non-homogeneous. This may affect photodynamic therapy response as shown in the results of depth of necrosis.

Conclusions: As a consequence of these results, this study suggests that photosensitizer surface spatial distribution should be taken into account in photodynamic therapy dosimetry, as this will help to better predict clinical results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2010.07.002DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
20
spatial distribution
8
wistar rats
8
fluorescence spectroscopy
8
photosensitizer surface
8
photosensitizer
7
photodynamic
6
distribution
5
therapy
5
non-homogeneous liver
4

Similar Publications

Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.

View Article and Find Full Text PDF

Biological carriers have emerged as significant tools to deliver radionuclides in nuclear medicine, providing a meaningful perspective for tumor imaging and treatment. Various radionuclide-labeled biological carriers have been developed to meet the needs of biomedical applications. This review introduces the principles of radionuclide-mediated imaging and therapy and the selected criteria of them, as well as a comprehensive description of the characteristics and functions of representative biological carriers including bacteria, cells, viruses, and their biological derivatives, emphasizing the labeled strategies of biological carriers combined with radionuclides.

View Article and Find Full Text PDF

Current status and trend of global research on the pharmacological effects of emodin family: bibliometric study and visual analysis.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Emodin, as a natural active ingredient, has shown great application potential in the fields of medicine, food and cosmetics due to its unique pharmacological effects, such as anti-inflammatory, antioxidant, anti-cancer, etc. In recent years, with the development of science and technology and the increase of people's demand for natural medicine, emodin research has been paid more and more attention by the global scientific research community. The bibliometric analysis of emodin and the construction of knowledge map are still blank.

View Article and Find Full Text PDF

Applications of Au Nanoclusters in Photon-Based Cancer Therapies.

Nanomaterials (Basel)

December 2024

Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.

Atomically precise gold nanoclusters (AuNCs) exhibit unique physical and optical properties, making them highly promising for targeted cancer therapy. Their small size enhances cellular uptake, facilitates rapid distribution to tumor tissues, and minimizes accumulation in non-target organs compared to larger gold nanoparticles. AuNCs, particularly Au, show significant potential in phototherapy, including photothermal (PTT), photodynamic (PDT), and radiation therapies.

View Article and Find Full Text PDF

Afterglow luminescence provides ultrasensitive optical detection by minimizing tissue autofluorescence and increasing the signal-to-noise ratio. However, due to the lack of suitable unimolecular afterglow scaffolds, current afterglow agents are nanocomposites containing multiple components with limited afterglow performance and have rarely been applied for cancer theranostics. Herein, we report the synthesis of a series of oxathiine-containing donor-acceptor block semiconducting polymers (PDCDs) and the observation of their high photoreactivity and strong near-infrared (NIR) afterglow luminescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!