Following the intricate architecture of the eukaryotic cell, protein synthesis involves formation of many macromolecular assemblies, some of which are composed by tRNA-aminoacylation enzymes. Protein-protein and protein-tRNA interactions in these complexes can be facilitated by non-catalytic tRNA-binding proteins. This review focuses on the dissection of the molecular, structural and functional properties of a particular family of such proteins: yeast Arc1p and its homologues in prokaryotes and higher eukaryotes. They represent paradigms of the strategies employed for the organization of sophisticated and dynamic nanostructures supporting spatio-temporal cellular organization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2010.08.023 | DOI Listing |
Structure
March 2024
Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany. Electronic address:
Eukaryotic tRNA guanine transglycosylase (TGT) is an RNA-modifying enzyme which catalyzes the base exchange of the genetically encoded guanine 34 of tRNAs for queuine, a hypermodified 7-deazaguanine derivative. Eukaryotic TGT is a heterodimer comprised of a catalytic and a non-catalytic subunit. While binding of the tRNA anticodon loop to the active site is structurally well understood, the contribution of the non-catalytic subunit to tRNA binding remained enigmatic, as no complex structure with a complete tRNA was available.
View Article and Find Full Text PDFBiochem J
November 2018
Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
The asparaginyl-tRNA synthetase (NRS) catalyzes the attachment of asparagine to its cognate tRNA during translation. NRS first catalyzes the binding of Asn and ATP to form the NRS-asparaginyl adenylate complex, followed by the esterification of Asn to its tRNA. We investigated the role of constituent domains in regulating the structure and activity of NRS (FgNRS).
View Article and Find Full Text PDFFEBS Lett
September 2010
Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece.
Following the intricate architecture of the eukaryotic cell, protein synthesis involves formation of many macromolecular assemblies, some of which are composed by tRNA-aminoacylation enzymes. Protein-protein and protein-tRNA interactions in these complexes can be facilitated by non-catalytic tRNA-binding proteins. This review focuses on the dissection of the molecular, structural and functional properties of a particular family of such proteins: yeast Arc1p and its homologues in prokaryotes and higher eukaryotes.
View Article and Find Full Text PDFJ Mol Biol
September 2008
Laboratory of Biochemistry, Department of Medicine, University of Thessaly, P.O. Box 1400, Mezourlo, 41110 Larissa, Greece.
The catalytic core of methionyl-tRNA synthetase (MetRS) is conserved among all life kingdoms but, depending on species origin, is often linked to non-catalytic domains appended to its N- or C-terminus. These domains usually contribute to protein-protein or protein-tRNA interactions but their exact biological role and evolutionary purpose is poorly understood. Yeast MetRS contains an N-terminal appendix that mediates its interaction with the N-terminal part of Arc1p.
View Article and Find Full Text PDFJ Fluoresc
September 2006
Department of Protein Engineering, Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150, Acad. Zabolotnogo Str., Kiev, Kyiv 03143, Ukraine.
The non-catalytic COOH-terminal module formed after proteolytic cleavage of full-length mammalian tyrosyl-tRNA synthetase displays dual function: tRNA binding ability and cytokine activity. With the aim to explore the intramolecular dynamics of C-module in solution we used fluorescence spectroscopy to study conformational changes of isolated protein. We used information from fluorescence spectra and computational model for characterization of a microenvironment of a single tryptophan residue (Trp144).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!