Electrochemical fabrication of molecularly imprinted porous silicate film electrode for fast and selective response of methyl parathion.

Biosens Bioelectron

Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Minyuan Road 708#, Wuhan 430074, China.

Published: October 2010

A methyl parathion-templated molecularly imprinted porous silicate thin film was electrodeposited onto a glassy carbon electrode using tetraethylorthosilicate sol as the silicon precursor and vinyltriethoxysilane as the functional monomer. The surface morphology and crystallinity of the imprinted film were characterized by scanning electron microscope and X-ray diffraction. The binding performance of the film with methyl parathion was examined with voltammetric techniques. The results show that the imprinted sol-gel film gives fast, sensitive and selective response to methyl parathion. The good selectivity of the film allows fine discriminations of methyl parathion from interferants, which including parathion, α-hydroxyl-4-nitrophenyl-dimethyl-phosphonate, p-nitrophenol and nitrobenzene. A linear range for methyl parathion determination was found from 1.0×10(-8) to 1.0×10(-5) mol l(-1) with an estimated detection limit of 8.9×10(-9) mol l(-1) (S/N=3). This imprinted sol-gel film electrode was proved to be a versatile sensing tool for the selective detection of methyl parathion in real samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2010.07.085DOI Listing

Publication Analysis

Top Keywords

methyl parathion
24
molecularly imprinted
8
imprinted porous
8
porous silicate
8
film electrode
8
selective response
8
response methyl
8
imprinted sol-gel
8
sol-gel film
8
mol l-1
8

Similar Publications

It is of great significance to develop sensors for trace pesticide residues detection in food. Herein, an electrochemiluminescence (ECL) sensor with high sensitivity for the detection of methyl parathion (MP) was constructed by combining of the acetylcholinesterase (AChE) enzyme-inhibited reaction with tris-2,2'-bipyridyl ruthenium Ru(bpy) -triethylamine (TEA) system for the first time. A new ECL probe of MIL-100 loaded with Ru(bpy) (Ru-MIL-100) was synthesized, and then Ru-MIL-100 and AChE were immobilized on the electrode with Nafion.

View Article and Find Full Text PDF

A flexible 3D ordered SERS sensor for rapid and reliable detection of pesticide residues in fruits.

Chem Commun (Camb)

January 2025

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.

We fabricated flexible, three-dimensional (3D) ordered silicon nanowire (SiNW) arrays decorated with high-density silver nanoparticles (AgNPs) for the sensitive and reproducible detection of pesticide residues. These sensors demonstrated a detection limit of 10 M for methyl parathion (MPT) on curved surfaces.

View Article and Find Full Text PDF

This study investigates the biodegradation of methyl parathion, an organophosphate pesticide used in paddy fields. Microbial degradation transforms toxic pesticides into less harmful compounds, influenced by the microbial community in the soil. To isolate different microbial colonies, soil samples from an organophosphorus-treated groundnut field were plated on nutrient agar and MSM with 1% glucose and 0.

View Article and Find Full Text PDF

Dual-mode colorimetric and chemiluminescence aptasensor for organophosphorus pesticides detection using aptamer-regulated peroxidase-like activity of TA-Cu.

Talanta

December 2024

Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 of 13th Street, TEDA, Tianjin, 300457, PR China. Electronic address:

The residues of organophosphorus pesticides (OPs) in food pose a huge threat to human health. Therefore, the development of detection methods with simple design and high sensitivity is urgently needed. Here, a colorimetric/chemiluminescence (CL) dual-mode aptasensor strategy with high selectivity and sensitivity for detecting Parathion-methyl (PM) was designed based on aptamer-regulated nanozyme activity.

View Article and Find Full Text PDF

Facile green preparation of highly fluorescent nitrogen-doped carbon dots from bagasse for sensitive methyl parathion detection.

Food Chem

February 2025

Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, PR China.

In this work, a high sensitivity fluorescence sensor system utilizing nitrogen-doped carbon dots (N-CDs) from bagasse was studied. A method was developed to examine methyl parathion (MP) via alkali hydrolysis. N-CDs were prepared via hydrothermal method from biomass bagasse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!