A novel depth electrode placement planning strategy is presented for propagating current to distant epileptic tissue during direct neurostimulation therapy. Its goal is to predict optimal lead placement in cortical white matter for influencing the maximal extent of the epileptic circuit. The workflow consists of three fundamental techniques to determine responsive neurostimulation depth lead placement in a patient with bilaterally independent temporal lobe epileptogenic regions. (1) Pre-implantation finite element modeling was used to predict the volume of cortical activation (VOCA). This model estimated the electric field and neural tissue influenced surrounding two adjacent active depth contacts prior to implantation. The calculations included anticipated stimulation parameters. (2) Propagation of stimulation therapy was simulated pre-implantation using the VOCA model positioned in the subject's diffusion tensor imaging (DTI) determined 8h post-ictally compared to an interictal DTI. (3) Validation of the predicted stimulated anatomical targets was determined 4.3 months post-implantation using subtracted activated SPECT (SAS). Presurgically, the modeling system predicted white matter connectivity and visual side-effects to stimulation. Post-implantation, SAS validated focal blood flow changes in ipsilateral occipital and frontal regions, and contralateral temporal lobe. This workflow demonstrates the feasibility of planning white matter-electrode placement with individual specificity to predict propagation of electrical current throughout an epileptic circuit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eplepsyres.2010.07.010 | DOI Listing |
Front Neurosci
January 2025
Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
[This corrects the article DOI: 10.3389/fnins.2024.
View Article and Find Full Text PDFPol J Radiol
December 2024
First Hospital of Shanxi Medical University, Shanxi, China.
Purpose: Isocitrate dehydrogenase (IDH) mutation status serves as a crucial prognostic indicator for glioma, typically assessed via immunohistochemical analysis post-surgery. Given the invasiveness of this approach, perhaps we can utilise convenient and noninvasive magnetic resonance imaging (MRI) methods to predict IDH mutation status. However, the current landscape lacks a standardised MRI technique for accurately predicting IDH mutations.
View Article and Find Full Text PDFJ Psychiatry Neurosci
January 2025
From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
Background: White matter damage is closely associated with cognitive and psychiatric symptoms and is prevalent in cerebral small vessel disease (CSVD); although the pathophysiological mechanisms involved in CSVD remain elusive, inflammation plays a crucial role. We sought to investigate the relationship between systemic inflammation markers and imaging markers of CVSD, namely white matter hyperintensity (WMH) and microstructural injury.
Methods: We conducted a study involving both cross-sectional and longitudinal data from the UK Biobank Cohort.
J Clin Neurosci
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China. Electronic address:
Objectives: This study investigated the correlation between retinal vasculature and cerebral small vessel disease (CSVD) imaging markers, providing new evidence for the retina-brain association.
Methods: Two hundred and thirty-nine participants aged 55-85 were enrolled in the study. CSVD indicators, encompassing white matter hyperintensities (WMHs), lacunes (LAs), cerebral microbleeds (CMBs), and enlarged perivascular spaces (EPVSs), were assessed.
Ann Am Thorac Soc
January 2025
University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, California, United States.
Rationale: Globally, in 2019, chronic obstructive pulmonary disease (COPD) was the third leading cause of death. While tobacco smoking is the predominant risk factor, the role of long-term air pollution exposure in increasing risk of COPD remains unclear. Moreover, there are few studies that have been conducted in racial and ethnic minoritized and socioeconomically diverse populations, while accounting for smoking history and other known risk factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!