A number of neurosteroids have been demonstrated to exert anxiolytic properties by means of a positive modulation of inhibitory GABAergic neurotransmission. The observation that neurosteroid synthesis can be pharmacologically regulated by ligands to the mitochondrial translocator protein (TSPO) has prompted the search for new, more selective TSPO ligands able to stimulate steroidogenesis with great efficacy. In the present study, the potential anxiolytic activity of a selective TSPO ligand, N,N-di-n-propyl-2-(4-methylphenyl)indol-3-ylglyoxylamide (MPIGA), was tested by means of the elevated plus maze paradigm. Moreover, the in vitro effects on synaptoneurosomal GABA(A) receptor (GABA(A)R) activity exerted by the conditioned salt medium from MPIGA-treated ADF human glial cells were investigated. MPIGA (30mg/kg) was found to affect rats' performance in the elevated plus maze test significantly, leading to an increase in both entries and time spent in the open arms. This same dose of MPIGA had no effect on rats' spontaneous exploratory activity. The conditioned salt medium from MPIGA-treated ADF cells potentiated the (36)Cl(-) uptake into cerebral cortical synaptoneurosomes. The exposure of ADF cells to MPIGA stimulated the production of pregnelonone derivatives including allopregnanolone, one of the major positive GABA(A)R allosteric modulator. In conclusion, the TSPO ligand MPIGA is a promising anxiolytic drug. The mechanism of action by which MPIGA exerts its anxiolytic activity was identified in the stimulation of endogenous neurosteroid production, which in turn determined a positive modulation of GABA(A)R activity, thus opening the way to the potential use of this TSPO ligand in anxiety and depressive disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psyneuen.2010.07.021DOI Listing

Publication Analysis

Top Keywords

tspo ligand
16
anxiolytic properties
8
neurosteroid production
8
gabaa receptor
8
positive modulation
8
selective tspo
8
anxiolytic activity
8
elevated maze
8
gabaar activity
8
conditioned salt
8

Similar Publications

An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity.

View Article and Find Full Text PDF

Remimazolam inhibits apoptosis of endothelial and epithelial cells by activating the PI3K/AKT pathway in acute lung injury.

Int Immunopharmacol

December 2024

Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China. Electronic address:

Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are significant burdens on global health. Remimazolam (REM), a novel sedative, has shown potential in its anti-inflammatory effects. However, a lack of evidence currently hinders our ability to determine if REM can improve ALI/ARDS.

View Article and Find Full Text PDF

The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO).

View Article and Find Full Text PDF

Neurosteroids and Translocator Protein (TSPO) in neuroinflammation.

Neurochem Int

January 2025

Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy. Electronic address:

Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases.

View Article and Find Full Text PDF

Mitochondrial dysfunction of Astrocyte induces cell activation under high salt condition.

Heliyon

December 2024

Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.

Excess dietary sodium can accumulate in brain and adversely affect human health. We have confirmed in previous studies that high salt can induce activation of astrocyte manifested by the secretion of various inflammatory factors. In order to further explore the effect of high salt on the internal cell metabolism of astrocytes, RNA sequencing was performed on astrocytes under high salt environment, which indicated the oxidative phosphorylation and glycolysis pathways of astrocytes were downregulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!