An oral insulin delivery system based on methyl-β-cyclodextrin (MCD) complexed insulin encapsulated polymethacrylic acid (PMAA) hydrogel microparticles was evaluated in this investigation. Poly(methacrylic acid)-chitosan-polyethylene glycol (PCP) microparticles were prepared by ionic gelation method. The insulin-MCD (IC) complex prepared was characterized by fluorescence spectroscopic and isothermal titration micro-calorimeteric (ITC) methods. MCD complexed insulin was encapsulated onto PCP microparticles by diffusion filling method. Loading and release properties of the complexed insulin from microparticles were evaluated under in vitro conditions. The effect of MCD complexation on the permeability of insulin was studied using Caco 2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. In vivo experiments were carried on streptozotocin induced diabetic rats to evaluate the efficacy of MCD complexed insulin encapsulated PCP microparticles to deliver insulin by the oral route. IC complex formation was established by fluorescence and ITC investigations. Insulin loading and release properties from the hydrogel matrix was rather unaffected by the MCD complexation. However MCD complexation was effective in enhancing insulin transport across Caco 2 cell monolayers, when applied in combination with the PMAA hydrogel system. Both insulin and MCD complexed insulin encapsulated PCP microparticles were effective in reducing blood glucose level in diabetic animal models. Cyclodextrin complexed insulin encapsulated hydrogel microparticles appear to be an interesting candidate for oral delivery of insulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2010.08.007 | DOI Listing |
Background: Dementia, a growing health crisis, disproportionally affects persons from racial/ethnic backgrounds and individuals with comorbidities. Latelife change in cognition is complex and nonlinear, as well as differential for these individuals. These individuals are also largely underrepresented in clinical trials.
View Article and Find Full Text PDFIn Silico Pharmacol
January 2025
Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.
Unlabelled: Globally, there is an increase in the prevalence of metabolic illnesses, including diabetes mellitus. However, current therapies for diabetes and other metabolic illnesses are not well understood. Pharmacological treatment of type 2 diabetes is challenging, moreover, the majority of antidiabetic medications are incompatible with individuals who have cardiac disease, renal illness, or liver damage.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
Department of Orthopaedics, the First Hospital of Lanzhou University, Lanzhou 730000, China.
The maintenance of skeletal muscle quality involves various signal pathways that interact with each other. Under normal physiological conditions, these intersecting signal pathways regulate and coordinate the hypertrophy and atrophy of skeletal muscles, balancing the protein synthesis and degradation of muscle. When the total rate of protein synthesis exceeds that of protein degradation, the muscle gradually becomes enlarged, while when the total rate of protein synthesis is lower than that of protein degradation, the muscle shrinks.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
Resistant starch (RS) reduces or delays the digestion of carbohydrates and glucose synthesis, thereby lowering postprandial blood glucose levels. The wheat starch-Lonicera caerulea berry polyphenols (WS-LCBP) complex was constructed using high hydrostatic pressure (HHP). The effects of intragastric administration of WS or WS-LCBP on blood glucose in T2DM model mice.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, generally due to defects of insulin action or secretion. Inhibition of α-glucosidase, an enzyme responsible for carbohydrate degradation, is a promising strategy for managing postprandial hyperglycemia in diabetic patients. In this study, two new C-linked diarylheptanoid dimers, kaemgalanganols A (1) and B (2), were isolated from K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!