Novel ionic liquid (IL) sol-gel materials development, for enzyme immobilization, was the goal of this work. The deglycosylation of natural glycosides were performed with α-l-rhamnosidase and β-d-glucosidase activities expressed by naringinase. To attain that goal ILs with different structures were incorporated in TMOS/Glycerol sol-gel matrices and used on naringinase immobilization. The most striking feature of ILs incorporation on TMOS/Glycerol matrices was the positive impact on the enzyme activity and stability, which were evaluated in fifty consecutive runs. The efficiency of α-rhamnosidase expressed by naringinase TMOS/Glycerol@ILs matrices increased with cation hydrophobicity as follows: [OMIM]>[BMIM]>[EMIM]>[C(2)OHMIM]>[BIM] and [OMIM]≈[E(2)-MPy]≫[E(3)-MPy]. Regarding the imidazolium family, the hydrophobic nature of the cation resulted in higher α-rhamnosidase efficiencies: [BMIM]BF(4)≫[C(2)OHMIM]BF(4)≫[BIM]BF(4). Small differences in the IL cation structure resulted in important differences in the enzyme activity and stability, namely [E(3)-MPy] and [E(2)-MPy] allowed an impressive difference in the α-rhamnosidase activity and stability of almost 150%. The hydrophobic nature of the anion influenced positively α-rhamnosidase activity and stability. In the BMIM series the more hydrophobic anions (PF(6)(-), BF(4)(-) and Tf(2)N(-)) led to higher activities than TFA. SEM analysis showed that the matrices are shaped lens with a film structure which varies within the lens, depending on the presence and the nature of the IL. The kinetics parameters, using naringin and prunin as substrates, were evaluated with free and naringinase encapsulated, respectively on TMOS/Glycerol@[OMIM][Tf(2)N] and TMOS/Glycerol@[C(2)OHMIM][PF(6)] and on TMOS/Glycerol. An improved stability and efficiency of α-l-rhamnosidase and β-glucosidase expressed by encapsulated naringinase on TMOS/Glycerol@[OMIM][Tf(2)N] and TMOS/Glycerol@[C(2)OHMIM][PF(6)] were achieved. In addition to these advantageous, with ILs as sol-gel templates, environmental friendly processes can be implemented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2010.08.005 | DOI Listing |
Cell Rep
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China. Electronic address:
Sterols target sterol-sensing domain (SSD) proteins to lower cholesterol and circulating and hepatic triglyceride levels, but the mechanism remains unclear. In this study, we identify acyl-coenzyme A (CoA) synthetase long-chain family member 1 (ACSL1) as a direct target of ergosterol (ES). The C-terminal domain of ACSL1 undergoes conformational changes from closed to open, and ES may target the drug-binding pocket in the acetyl-CoA synthetase-like domain 1 (ASLD1) of ACSL1 to stabilize the closed conformation and maintain its activity.
View Article and Find Full Text PDFJ Liposome Res
January 2025
Samarth Biorigins LLP, KIADB Industrial Area, Tumkur, India.
Background: Lactoferrin (Lf), a multifunctional glycoprotein known for its roles in immune modulation, iron metabolism, and antimicrobial activity, has limited therapeutic efficacy due to poor bioavailability. Liposomal encapsulation of lactoferrin (LLf) offers a potential solution by improving its stability, absorption, and sustained release, making it a promising candidate for various clinical applications. This study aims to compare the effectiveness of LLf and plain Lf in cellular uptake, proliferation, and wound healing using HEK-293T and Caco-2 cell lines.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China/Province Multi-Component Chinese Medicine Engineering Technology Research Center of Liaoning, Dalian, China/Modern Traditional Chinese Medicine Research and Engineering Laboratory of Liaoning, Dalian, China.
Chebulagic acid and chebulinic acid are the two tannin compounds with the highest content in Terminalia chebula, they were separated by ODS column eluted with 20% methanol and 35% methanol, respectively. The compounds were identified by comparing the data of H NMR and C NMR with the literature; HPLC method was used to investigate the stable storage conditions of chebulagic acid and chebulinic acid; lipopolysaccharide (LPS) induced in vivo inflammation model and RAW264.7 macrophage in vitro inflammatory model to evaluate the anti-inflammatory activities of chebulagic acid and chebulinic acid.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
Verona-integron-metallo-β-lactamase (VIM-2) is one of the most widespread class B β-lactamase responsible for β-lactam resistance. Although active-site residues help in metal binding, the residues nearing the active-site possess functional importance. Here, to decipher the role of such residues in the activity and stability of VIM-2, the residues E146, D182, N210, S207, and D213 were selected through in-silico analyses and substituted with alanine using site-directed mutagenesis.
View Article and Find Full Text PDFAnim Microbiome
January 2025
Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia.
Background: In holobiont, microbiota is known to play a central role on the health and immunity of its host. Then, understanding the microbiota, its dynamic according to the environmental conditions and its link to the immunity would help to react to potential dysbiosis of aquacultured species. While the gut microbiota is highly studied, in marine invertebrates the hemolymph microbiota is often set aside even if it remains an important actor of the hemolymph homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!