Progastrin is processed to a number of peptides including glycine-extended gastrin, amidated gastrin and the C-terminal flanking peptide (CTFP). Progastrin and gastrin-gly are pro-proliferative and anti-apoptotic in gastric and colorectal cancer cell lines. The CTFP is a major form of progastrin in the stomach and colon and stimulates proliferation. However the effect of CTFP on apoptosis has not been examined. Using the human gastric carcinoma cell line AGS we show that CTFP attenuates apoptosis through a PI3-kinase pathway by stimulating the phosphorylation of Akt leading to sustained increases in the concentrations of Bcl-xL and phosphorylated Bad protein and by reducing caspase 3 activity. The anti-apoptotic effect represents an important potential mechanism for the growth promoting action of CTFP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.regpep.2010.08.005 | DOI Listing |
Unlabelled: Bactofilins are a recently discovered class of cytoskeletal protein, widely implicated in subcellular organization and morphogenesis in bacteria and archaea. Several lines of evidence suggest that bactofilins polymerize into filaments using a central β-helical core domain, flanked by variable N- and C-terminal domains that may be important for scaffolding and other functions. However, a systematic exploration of the characteristics of these domains has yet to be performed.
View Article and Find Full Text PDFiScience
December 2024
Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
As an essential regulator of higher-order chromatin structures, CCCTC-binding factor (CTCF) is a highly conserved protein with a central DNA-binding domain of 11 tandem zinc fingers (ZFs), which are flanked by amino (N-) and carboxy (C-) terminal domains of intrinsically disordered regions. Here we report that CRISPR deletion of the entire C-terminal domain of alternating charge blocks decreases CTCF DNA binding but deletion of the C-terminal fragment of 116 amino acids results in increased CTCF DNA binding and aberrant gene regulation. Through a series of genetic targeting experiments, in conjunction with electrophoretic mobility shift assay (EMSA), circularized chromosome conformation capture (4C), qPCR, chromatin immunoprecipitation with sequencing (ChIP-seq), and assay for transposase-accessible chromatin with sequencing (ATAC-seq), we uncovered a negatively charged region (NCR) responsible for weakening CTCF DNA binding and chromatin accessibility.
View Article and Find Full Text PDFmBio
December 2024
Institute of Cell Biology, University of Bern, Bern, Switzerland.
Unlabelled: Trypanosomes have different ways of communicating with each other. While communication via quorum sensing, or by the release and uptake of extracellular vesicles, is widespread in nature, the phenomenon of flagellar fusion has only been observed in . We showed previously that a small proportion of procyclic culture forms (corresponding to insect midgut forms) can fuse their flagella and exchange cytosolic and membrane proteins.
View Article and Find Full Text PDFUnlabelled: The misfolding, aggregation, and the seeded spread of alpha synuclein (α-Syn) aggregates are linked to the pathogenesis of various neurodegenerative diseases, including Parkinson's disease (PD). Understanding the mechanisms by which chaperone proteins prevent the production and seeding of α-Syn aggregates is crucial for developing effective therapeutic leads for tackling neurodegenerative diseases. We show that a catalytically inactive variant of the chaperone HtrA1 (HtrA1*) effectively inhibits both α-Syn monomer aggregation and templated fibril seeding, and demonstrate that this inhibition is mediated by synergistic interactions between its PDZ and Protease domains and α-Syn.
View Article and Find Full Text PDFCommun Biol
December 2024
Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France.
Remorins are multifunctional proteins, regulating immunity, development and symbiosis in plants. When associating to the membrane, remorins sequester specific lipids into functional membrane nanodomains. The multigenic protein family contains six groups, classified upon their protein-domain composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!