Inter-individual response differences to vitamin D and Ca supplementation may be under genetic control through vitamin D and oestrogen receptor genes, which may influence their absorption and/or metabolism. Metabolomic studies on blood and urine from subjects supplemented with Ca and vitamin D reveal different metabolic profiles that segregate with genotype. Genotyping was performed for oestrogen receptor 1 gene (ESR1) and vitamin D receptor gene (VDR) in fifty-six postmenopausal women. Thirty-six women were classified as low bone density as determined by a heel ultrasound scan and twenty women had normal bone density acting as 'controls'. Those with low bone density (LBD) were supplemented with oral Ca and vitamin D and were classified according to whether they were 'responders' or 'non-responders' according to biochemical results before and after therapy compared to controls receiving no supplementation. Metabolomic studies on serum and urine were done for the three groups at 0 and 3 months of therapy using NMR spectroscopy with pattern recognition. The 'non-responder' group showed a higher frequency of polymorphisms in the ESR1 (codons 10 and 325) and VDR (Bsm1 and Taq1), compared with to the 'responders'. The wild-type genotype for Fok1 was more frequent in those with LBD (70 %) compared with the control group (10 %). Distinctive patterns of metabolites were displayed by NMR studies at baseline and 3 months of post-treatment, segregating responders from non-responders and controls. Identification of potential 'non-responders' to vitamin D and Ca, before therapy, based on a genomic and/or metabolomic profile would allow targeted selection of optimal therapy on an individual basis.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114510003065DOI Listing

Publication Analysis

Top Keywords

bone density
12
vitamin supplementation
8
oestrogen receptor
8
metabolomic studies
8
receptor gene
8
low bone
8
vitamin
7
genomic metabolomic
4
metabolomic patterns
4
patterns segregate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!