The structure and dynamics of the C (2)A(2) electronically excited state of the benzyl radical, C(7)H(7), were investigated by nanosecond and femtosecond pump-probe photoionization. A free jet of benzyl radicals was generated by flash pyrolysis from the precursors 2-phenylethyl nitrite and toluene. Nanosecond multiphoton ionization spectra show a number of vibronic bands that are excited in the wavelength range of 290-310 nm. At excitation wavelengths of 305, 301, and 298 nm, rapid biexponential decay of the excited states was observed. Lifetimes at the C-state origin (305 nm excitation) are 400 fs and 4.5 ps. The lifetimes decrease with increasing excitation energy. The dynamics can be understood within a two-step internal conversion to the electronic ground state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3469787 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!