The fragment spin difference scheme for triplet-triplet energy transfer coupling.

J Chem Phys

Taiwan International Graduate Program, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan.

Published: August 2010

To calculate the electronic couplings in both inter- and intramolecular triplet energy transfer (TET), we have developed the "fragment spin difference" (FSD) scheme. The FSD was a generalization from the "fragment charge difference" (FCD) method of Voityuk et al. [J. Chem. Phys. 117, 5607 (2002)] for electron transfer (ET) coupling. In FSD, the spin population difference was used in place of the charge difference in FCD. FSD is derived from the eigenstate energies and populations, and therefore the FSD couplings contain all contributions in the Hamiltonian as well as the potential overlap effect. In the present work, two series of molecules, all-trans-polyene oligomers and polycyclic aromatic hydrocarbons, were tested for intermolecular TET study. The TET coupling results are largely similar to those from the previously developed direct coupling scheme, with FSD being easier and more flexible in use. On the other hand, the Dexter's exchange integral value, a quantity that is often used as an approximate for the TET coupling, varies in a large range as compared to the corresponding TET coupling. To test the FSD for intramolecular TET, we have calculated the TET couplings between zinc(II)-porphyrin and free-base porphyrin separated by different numbers of p-phenyleneethynylene bridge units. Our estimated rate constants are consistent with experimentally measured TET rates. The FSD method can be used for both intermolecular and intramolecular TET, regardless of their symmetry. This general applicability is an improvement over most existing methodologies.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3467882DOI Listing

Publication Analysis

Top Keywords

tet coupling
12
tet
9
energy transfer
8
transfer coupling
8
fsd
8
scheme fsd
8
intramolecular tet
8
coupling
6
fragment spin
4
spin difference
4

Similar Publications

Background: Mitochondrial dysfunction is an early and prominent feature of Alzheimer's disease (AD). We have recently published that lower brain mitochondrial DNA copy number (mtDNAcn) is associated with increased risk of AD neuropathological change and reduced cognitive performance. Here, we addressed how mtDNAcn affects cell-type specific phenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • Ipriflavone (IPRI) is used to prevent postmenopausal bone loss and offers antioxidant and cognitive benefits, but it has low bioavailability due to poor solubility.
  • In this study, IPRI was formulated into targeted poly-lactic-co-glycolic acid (PLGA) nanoparticles with Tet-1 peptide to enhance its therapeutic effects in a rat model of Alzheimer's disease (AD), exacerbated by streptozotocin (STZ) injections.
  • Results showed that IPRI nanoparticles were more effective than free IPRI in reducing cognitive dysfunction, oxidative stress, and neurodegenerative changes, leading to improved neuronal cell viability and reduced Alzheimer's
View Article and Find Full Text PDF

Molecular characterization of ST15 carbapenem-resistant Klebsiella pneumoniae isolated in a single patient.

J Glob Antimicrob Resist

December 2024

Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Critical Care Medicine, Shanghai United Family Hospital, Shanghai, China. Electronic address:

Background: The carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a serious threat to antibiotic applicability and public health. During treatment, K. pneumoniae (KP) frequently exhibits shifts in drug-resistant phenotypes, complicating clinical treatment as it transitions from sensitivity to resistance.

View Article and Find Full Text PDF

Stem cell activity-coupled suppression of endogenous retrovirus governs adult tissue regeneration.

Cell

December 2024

Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA. Electronic address:

Mammalian retrotransposons constitute 40% of the genome. During tissue regeneration, adult stem cells coordinately repress retrotransposons and activate lineage genes, but how this coordination is controlled is poorly understood. Here, we observed that dynamic expression of histone methyltransferase SETDB1 (a retrotransposon repressor) closely mirrors stem cell activities in murine skin.

View Article and Find Full Text PDF

Phage engineering is an emerging technology due to the promising potential application of phages in medical and biotechnological settings. Targeted phage mutagenesis tools are required to customize the phages for a specific application and generate, in addition to that, so-called designer phages. CRISPR-Cas technique is used in various organisms to perform targeted mutagenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!