Recently described organic-inorganic nanocomposite coatings of the chemical composition: (PLL/PGA)(10)CaP[(PLL/PGA)(5)CaP](4) (coating A) and (PLL/PGA)(10)CaP[(PLL/PGA)(5)CaP](4)(PLL/PGA)(5) (coating B), applied to chemically etched titanium plates, have been tested by extensive cell culture tests and in vivo biological experiments, with uncoated titanium plates serving as controls. Before testing, coated samples were stored for extended periods of time (from 2 weeks to 8 months) under dry, sterile conditions. Cells of the cell-lines MC3T3-E1 and/or SAOS-2 were used for the following cell culture tests: initial adhesion (4 h) and proliferation (up to 21 days), cell activity (XTT test), morphology, synthesis of collagen type I and alkaline phosphatase activity (all incubation up to 21 days). In addition, coating B was tested against uncoated control in a validated in vivo pull-out model in rabbit tibia. The results of both in vitro and in vivo experiments show excellent biological properties of chemically etched titanium which are even surpassed by surfaces covered with coating B. Thus, after 8 weeks of healing the implants coated with B were significantly better attached to the cortical bone of rabbit thibiae than uncoated titanium controls with more than twice the force needed to detach coated implants. However, coating A (top crystal layer) had an adverse effect on both cell proliferation and activity, which is explained by morphological observations, showing inhibited spreading of the cells on its rough surfaces. The results also show the remarkable stability of the coatings when shelved under dry and sterile conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32888DOI Listing

Publication Analysis

Top Keywords

organic-inorganic nanocomposite
8
nanocomposite coatings
8
vitro vivo
8
vivo biological
8
chemically etched
8
etched titanium
8
titanium plates
8
cell culture
8
culture tests
8
uncoated titanium
8

Similar Publications

Bone Regeneration: Mini-Review and Appealing Perspectives.

Bioengineering (Basel)

January 2025

CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France.

Bone is a natural mineral-organic nanocomposite protecting internal organs and allowing mobility. Through the ages, numerous strategies have been developed for repairing bone defects and fixing fractures. Several generations of bone repair biomaterials have been proposed, either based on metals, ceramics, glasses, or polymers, depending on the clinical need, the maturity of technologies, and knowledge of the natural constitution of the bone tissue to be repaired.

View Article and Find Full Text PDF

Metal-organic cage crosslinked nanocomposites with enhanced high-temperature capacitive energy storage performance.

Nat Commun

January 2025

State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Polymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production.

View Article and Find Full Text PDF

Biocomposites of 2D layered materials.

Nanoscale Horiz

January 2025

Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.

View Article and Find Full Text PDF

Nanocomposite materials composed of an organic matrix and an inorganic nanofiller have been the subject of intense research in recent years. Indeed, the synergy between these two phases confers improved properties thanks to an increased surface-volume ratio, which reinforces the interactions between the particles and the polymer matrix. These interactions depend on many factors such as the shape, size and dispersion of the nanoobjects.

View Article and Find Full Text PDF

Nanoconfinements are utilized to program how polymers entangle and disentangle as chain clusters to engineer pseudo bonds with tunable strength, multivalency, and directionality. When amorphous polymers are grafted to nanoparticles that are one magnitude larger in size than individual polymers, programming grafted chain conformations can "synthesize" high-performance nanocomposites with moduli of ≈25GPa and a circular lifecycle without forming and/or breaking chemical bonds. These nanocomposites dissipate external stresses by disentangling and stretching grafted polymers up to ≈98% of their contour length, analogous to that of folded proteins; use both polymers and nanoparticles for load bearing; and exhibit a non-linear dependence on composition throughout the microscopic, nanoscopic, and single-particle levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!