The effect of biomaterial topography on healing in vivo and monocyte/macrophage stimulation in vitro was assessed. A series of expanded polytetrafluoroethylene (ePTFE) materials were characterized by increasing average intranodal distance of 1.2 μm (1.2-ePTFE), 3.0 μm (3.0-ePTFE), and 4.4 μm (4.4-ePTFE), but presented consistent surface chemistry with nonporous PTFE (np-PTFE). Subcutaneous implantation of 4.4-ePTFE into mice resulted in a statistically thinner capsule that appeared less organized and less dense than the np-PTFE response. In vitro, isolated monocytes/macrophages cultured on np-PTFE produced low levels of interleukin 1-beta (IL-1β), 1.2-ePTFE and 3.0-ePTFE stimulated intermediate levels, and 4.4-ePTFE stimulated a 15-fold increase over np-PTFE. Analysis of cDNA microarrays demonstrated that additional proinflammatory cytokines and chemokines, including IL-1β, interleukin 6, tumor necrosis factor alpha, monocyte chemotactic protein 1, and macrophage inflammatory protein 1-beta, were expressed at higher levels by monocytes/macrophages cultured on 4.4-ePTFE at 4 and 24 h, respectively. Expression ratios for several genes were quantified by RT-PCR and were consistent with those from the cDNA array results. These results demonstrate the effect of biomaterial topography on early proinflammatory cytokine production and gene transcription by monocytes/macrophages in vitro and decreased fibrous capsule thickness in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235956PMC
http://dx.doi.org/10.1002/jbm.a.32893DOI Listing

Publication Analysis

Top Keywords

biomaterial topography
12
healing vivo
8
vivo monocyte/macrophage
8
monocytes/macrophages cultured
8
topography alters
4
alters healing
4
monocyte/macrophage activation
4
vitro
4
activation vitro
4
vitro biomaterial
4

Similar Publications

The use of bioresorbable compositions has been considered a promising therapeutic approach for treating compromised bone tissues. Gellan gum (GG) is a predominant polysaccharide recognized for its exceptional biocompatibility and biodegradability, facile bio-fabrication, and customizable mechanical attributes, rendering it well-suited for developing versatile bone scaffolds. On the other hand, MXene nanosheets have been declared a representational filler to augment the osteogenic effect and amend the mechanical properties of the polymeric biomaterials.

View Article and Find Full Text PDF

While piezoelectric sensing and energy-harvesting devices still largely rely on inorganic components, biocompatible and biodegradable piezoelectric materials, such as cellulose nanocrystals, might constitute optimal and sustainable building blocks for a variety of applications in electronics and transient implants. To this aim, however, effective methods are needed to position cellulose nanocrystals in large and high-performance architectures. Here, we report on scalable assemblies of cellulose nanocrystals in multilayered piezoelectric systems with exceptional response, for various application scopes.

View Article and Find Full Text PDF

Despite the unique properties of clay nanocomposites for cardiovascular applications, there are few data on the hemocompatibility of these nanomaterials. This study represents the first comprehensive investigation of the hemo/biocompatibility of clay nanocomposites . Nanocomposite coatings of polylactic acid (PLA)-polyethylene glycol (3 wt %)-Cloisite20A nanoclay (3 wt %) were produced using electrospraying technique as potential drug-eluting stent (DES) coatings.

View Article and Find Full Text PDF

Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS).

View Article and Find Full Text PDF

In this study, we demonstrate a unique and promising approach to access peptide-based diverse nanostructures in a single gelator regime that is capable of exhibiting different surface topographies and variable physical properties, which, in turn, can effectively mimic the extracellular matrix (ECM) and regulate variable cellular responses. These diverse nanostructures represent different energy states in the free energy landscape, which have been created through different self-assembling pathways by providing variable energy inputs by simply altering the gelation induction temperature from 40 °C to 90 °C. The highly entangled network structure with long fibers was created by higher energy inputs, , inducing the gelation at a higher temperature in the 70-90 °C range, whereas the less entangled nanoscale network with short fibers was obtained at a lower gelation induction temperature of 40-60 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!