Radionuclide transfer to reptiles.

Radiat Environ Biophys

School of Environmental Sciences, University of Liverpool, Liverpool, Merseyside, UK.

Published: November 2010

Reptiles are an important, and often protected, component of many ecosystems but have rarely been fully considered within ecological risk assessments (ERA) due to a paucity of data on contaminant uptake and effects. This paper presents a meta-analysis of literature-derived environmental media (soil and water) to whole-body concentration ratios (CRs) for predicting the transfer of 35 elements (Am, As, B, Ba, Ca, Cd, Ce, Cm, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Po, Pu, Ra, Rb, Sb, Se, Sr, Th, U, V, Y, Zn, Zr) to reptiles in freshwater ecosystems and 15 elements (Am, C, Cs, Cu, K, Mn, Ni, Pb, Po, Pu, Sr, Tc, Th, U, Zn) to reptiles in terrestrial ecosystems. These reptile CRs are compared with CRs for other vertebrate groups. Tissue distribution data are also presented along with data on the fractional mass of bone, kidney, liver and muscle in reptiles. Although the data were originally collected for use in radiation dose assessments, many of the CR data presented in this paper will also be useful for chemical ERA and for the assessments of dietary transfer in humans for whom reptiles constitute an important component of the diet, such as in Australian aboriginal communities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00411-010-0321-1DOI Listing

Publication Analysis

Top Keywords

elements reptiles
8
data presented
8
reptiles
6
data
5
radionuclide transfer
4
transfer reptiles
4
reptiles reptiles
4
reptiles protected
4
protected component
4
component ecosystems
4

Similar Publications

Dietary preferences of extant reptiles can be directly observed, whereas diet reconstruction of extinct species typically relies on morphological or dental features. More specific information about the ingested diet is contained in the chemistry of hard tissues. Stable isotopes of calcium and strontium show systematic fractionations between diet and skeletal bioapatite, which is applied for diet and trophic-level reconstructions of extant and extinct vertebrate species.

View Article and Find Full Text PDF

Wireless sensor networks (WSNs) are imperative to a huge range of packages, along with environmental monitoring, healthcare structures, army surveillance, and smart infrastructure, however they're faced with numerous demanding situations that impede their functionality, including confined strength sources, routing inefficiencies, security vulnerabilities, excessive latency, and the important requirement to keep Quality of Service (QoS). Conventional strategies generally goal particular troubles, like strength optimization or improving QoS, frequently failing to provide a holistic answer that effectively balances more than one crucial elements concurrently. To deal with those challenges, we advocate a novel routing framework that is both steady and power-efficient, leveraging an Improved Type-2 Fuzzy Logic System (IT2FLS) optimized by means of the Reptile Search Algorithm (RSA).

View Article and Find Full Text PDF

Adaptive or non-adaptive? Cranial evolution in a radiation of miniaturized day geckos.

BMC Ecol Evol

December 2024

Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.

Lygodactylus geckos represent a well-documented radiation of miniaturized lizards with diverse life-history traits that are widely distributed in Africa, Madagascar, and South America. The group has diversified into numerous species with high levels of morphological similarity. The evolutionary processes underlying such diversification remain enigmatic, because species live in different ecological biomes, ecoregions and microhabitats, while suggesting strikingly high levels of homoplasy.

View Article and Find Full Text PDF

Well-preserved specimens of a new species of arthrodiran placoderm, sp. nov. (Middle Devonian of Victoria, Australia), reveals previously unknown information on the dermal skeleton, body-shape and dentition of the wide-spread genus .

View Article and Find Full Text PDF

Distinct trophic transfer of rare earth elements in adjacent terrestrial and aquatic food webs.

J Hazard Mater

December 2024

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Growing demand and usage of rare earth elements (REEs) lead to significant pollution in wildlife, but trophic transfer of REEs in different food webs has not been well understood. In the present study, bioaccumulation and food web transfer of 16 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and Sc) were investigated in different terrestrial and aquatic species. Median concentrations of REEs in plant, invertebrate, fish, amphibian, reptile, bird, and vole samples were 488-6030, 296-2320, 123-598, 17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!