Modified peptides constitute a sub-population among the tryptic peptides analyzed in LC-MS based shotgun proteomics experiments. For larger proteomes including the human proteome, the tryptic peptide pool is very large, which necessitates some form of sample fractionation. By carefully choosing the sample fractionation and separation methods applied as shown here for the combination of narrow-range immobilized pH gradient isoelectric focusing (IPG-IEF) and nanoUPLC-MS, significantly increased information content can be achieved. Relatively low standard deviations were obtained for such multidimensional separations in terms of peptide pI (<0.05 pI units) and retention time (<0.3 min for a 350 min gradient) for a selection of highly complex proteomics samples. Using narrow-range IPG-IEF, experimental and predicted pI were in relative good agreement. However, based on our data, retention time prediction algorithms need further improvements in accuracy to match state-of-the-art reversed-phase chromatography performance. General trends of peptide pI shifts induced by common modifications including deamidations and N-terminal modifications are described. Deamidations of glutamine and asparagines shift peptide pI by approximately 1.5 pI units, making the peptides more acidic. Additionally, a novel pI shift (+~0.4 pI units) was found associated with dethiomethyl Met modifications. Further, the effects of these modifications as well as methionine oxidation were investigated in terms of experimentally observed retention time shifts in the chromatographic separation step. Clearly, post-translational modification-induced influences on peptide pI and retention time can be accurately and reproducibly measured using narrow-range IPG-IEF and high-performance nanoLC-MS. Even at modest mass accuracy (±50 ppm), the inclusion of peptide pI (±0.2 pI units) and/or retention time (±20 min) criteria are highly informative for human proteome analyses. The applications of using this information to identify post-translationally modified peptides and improve data analysis workflows are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-010-0704-2DOI Listing

Publication Analysis

Top Keywords

multidimensional separations
8
sample fractionation
8
observed peptide
4
peptide retention
4
retention time
4
time shifts
4
shifts result
4
result post-translational
4
post-translational modifications
4
modifications multidimensional
4

Similar Publications

Background: Gut microbiome on predicting clinical responses to immune checkpoint inhibitors (ICIs) has been discussed in detail for decades, while microecological features of the lower respiratory tract within advanced non-small-cell lung cancer (NSCLC) are still relatively vague.

Methods: During this study, 26 bronchoalveolar lavage fluids (BALF) from advanced NSCLC participants who received immune checkpoint inhibitor monotherapy were performed 16S rRNA sequencing and untargeted metabolome sequencing to identify differentially abundant microbes and metabolic characteristics. Additionally, inflammatory cytokines and chemokines were also launched in paired BALF and serum samples by immunoassays to uncover their underlying correlations.

View Article and Find Full Text PDF

Introduction: Sense of coherence (SOC) refers to the psychosocial aspects and origins of health. Sense of coherence is related to physical and psychological health and quality of life. Military studies on SOC are commonly related to military deployment or operations, military training, and military fitness.

View Article and Find Full Text PDF

In multi-dimensional nanopositioning and nanomeasuring devices, interference measurement is widely used. The three-dimensional (3D) target mirror serves as the spatial reference plane to achieve multidimensional interference measurements. However, the surface shape errors of the target mirror are superimposed on the geometric dimensions of the measured workpiece, which limits the system's overall measurement accuracy.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a drug resistant and lethal cancer. Identification of the genes that consistently show altered expression across patients' cohorts can expose effective therapeutic targets and strategies. To identify such genes, we separately analyzed five human PDAC microarray datasets.

View Article and Find Full Text PDF

Remote photo-plethysmography (rPPG) is a useful camera-based health motioning method that can measure the heart rhythm from facial videos. Many well-established deep learning models can provide highly accurate and robust results in measuring heart rate (HR) and heart rate variability (HRV). However, these methods are unable to effectively eliminate illumination variation and motion artifact disturbances, and their substantial computational resource requirements significantly limit their applicability in real-world scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!