Background: The apelin receptor (APJ) is related to angiotensin-like-receptor 1 (AGTRL1). This study was designed to elucidate the in vivo localization and changes of APJ in cirrhotic liver, and the in vitro changes of APJ expression in cultured hepatic stellate cells (HSCs) and capillarized sinusoidal endothelial cells (SECs) activated by growth factors.
Methods: In vivo studies used control liver samples, cirrhotic liver samples from patients with Child's A cirrhosis undergoing surgical resection (Child-A-LC), and cirrhotic liver samples from autopsied cases of decompensated Child's C cirrhosis (Child-C-LC). Immunohistochemical (IHC), Western blot, laser-capture microdissection (LCM) coupled with reverse transcription -polymerase chain reaction (RT-PCR), and immunoelectron microscopic (IEM) studies for APJ expression were conducted. In vitro examinations used commercial human HSCs and SECs. APJ expression was examined in cultured HSCs activated by growth factors and in capillarized SECs activated by angiogenic factors.
Results: The IHC study of liver samples revealed only slight APJ expression in hepatic sinusoids in control liver tissue. In cirrhotic liver (Child-A-LC and Child-C-LC), APJ expression was evident mainly along the sinusoids and on portal fibroblasts in fibrotic septa. Western blot analysis of whole-liver homogenate and LCM-PCR of sinusoids revealed overexpression of APJ in Child-C-LC samples. The results of IEM studies showed that APJ expression was increased significantly on HSCs, but it was sparse on SECs in Child-C-LC tissue. In vitro examination revealed that APJ was overexpressed in cultured HSCs activated by platelet-derived growth factor-β.
Conclusions: Enhanced expression of APJ on HSCs in cirrhosis indicates markedly increased vascular remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00535-010-0296-3 | DOI Listing |
Exp Mol Med
January 2025
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland.
Human pluripotent stem cell-derived β-cells (SC-β-cells) represent an alternative cell source for transplantation in diabetic patients. Although mitogens could in theory be used to expand β-cells, adult β-cells very rarely replicate. In contrast, newly formed β-cells, including SC-β-cells, display higher proliferative capacity and distinct transcriptional and functional profiles.
View Article and Find Full Text PDFPeptides
December 2024
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China. Electronic address:
Biomolecules
November 2024
Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada.
Food Funct
December 2024
School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
Based on its anti-inflammatory and antioxidant properties, (DC) Stapf is commonly used in traditional and modern medicine to cure different diseases. The present study investigates the potential of organic extract as an anti-obesity drug in a HCHFD (high-carbohydrate, high-fat diet) model for obese rats. Its negative hypolipidemic effect has been confirmed through biochemical and histological methods.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Ophthalmology, Kansai Medical University, Osaka, Japan.
Objective: The exact relationship between fibroblast growth factor 2 (FGF2) and choroidal neovascularization (CNV) remains unclear. In this study, using optical coherence tomography angiography (OCTA) and FGF2-tg mice which are transgenic mice with a rhodopsin promoter/FGF2 gene fusion, we aimed to investigate the dynamics of FGF2's role in angiogenesis over time.
Methods: We developed laser-induced CNV models of FGF2-tg and wild-type (WT) mice and then separated them into two groups using different laser photocoagulation (PC) conditions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!