The C-type lectin SIGNR3 is a mouse homologue of human DC-SIGN, which shares carbohydrate-binding specificity with human DC-SIGN. However, the expression profile of SIGNR3 is largely unknown. To examine the expression of SIGNR3 in immune cells, we generated SIGNR3-specific mAb and investigated SIGNR3 expression in vivo. SIGNR3 was expressed on a fraction of MHC II(+) DCs and Mϕs in the dermis and CD115(+)Ly6C(int-low) monocytes in the blood and BM. In the LNs, SIGNR3(+) cells localized adjacent to PNAd(+) HEV-like vessels. They were also found in interfollicular regions in sLNs but not mLNs. Those SIGNR3(+) cells expressed CD11b and variable levels of CD11c and MHC II. As in LNs, SIGNR3 was expressed on a large proportion of the CD11b(+)CD11c(int-high) cells in the spleen. In the lung, SIGNR3(+) cells belonged to the CD11b(+)CD11c(int) population, and Mϕs in the airway and lung faintly expressed SIGNR3. When PKH67-labeled CD115(+)Ly6C(high) BM monocytes were transferred into normal recipients, they up-regulated SIGNR3 expression along with the decrease in Ly6C expression during the circulation and upon arrival at the peripheral LNs through HEV. In addition, CD11b(high)Ly6C(high) monocytes that entered sLNs differentiated into CD11b(+) DCs in a couple of days, whereas those in the spleen, mLNs, and lung differentiated into CD11c(int) monocytic cells. These results suggest that SIGNR3 is a new differentiation marker for myeloid mononuclear cells and indicate that some DCs, especially in the sLNs, are possibly replenished by Ly6C(high) monocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.0510251 | DOI Listing |
Front Immunol
March 2022
The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
J Biol Chem
October 2020
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica-Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
S-layer (glyco)-proteins (SLPs) form a nanostructured envelope that covers the surface of different prokaryotes and show immunomodulatory activity. Previously, we have demonstrated that the S-layer glycoprotein from probiotic CIDCA 8348 (SLP-8348) is recognized by Mincle (macrophage inducible C-type lectin receptor), and its adjuvanticity depends on the integrity of its glycans. However, the glycan's structure has not been described so far.
View Article and Find Full Text PDFPLoS Negl Trop Dis
December 2019
Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America.
Background: Ebolavirus (EBOV) outbreaks, while sporadic, cause tremendous morbidity and mortality. No therapeutics or vaccines are currently licensed; however, a vaccine has shown promise in clinical trials. A critical step towards development of effective therapeutics is a better understanding of factors that govern host susceptibility to this pathogen.
View Article and Find Full Text PDFJ Mol Biol
July 2017
R&D Laboratory, Division of Immunology and Allergy, CHUV, Centre des Laboratoires d'Epalinges, 1066 Epalinges, Switzerland. Electronic address:
In addition to contributing to immune exclusion at mucosal surfaces, secretory IgA (SIgA) made of polymeric IgA and secretory component is able to selectively reenter via microfold cells into Peyer's patches (PPs) present along the intestine and to associate with dendritic cells (DCs) of the CD11cCD11bMHCIIF4/80CD8phenotype in the subepithelial dome region and the draining mesenteric lymph nodes (MLNs). However, the nature of the receptor(s) for SIgA on murine PP and MLN DCs is unknown. We find that glycosylated secretory component moiety and polymeric IgA are both involved in the specific interaction with these cells.
View Article and Find Full Text PDFImmunobiology
April 2017
Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Japan.
Activation of the innate immunity by adjuvants, such as pertussis toxin (PTX), in the presence of autoreactive lymphocytes and antigen mimicry is sufficient to trigger autoimmunity. Toll-like, C-type lectin, and immunglobulin-like receptors play an important role in the innate immunity by sensing a variety of microbial products through several adaptor proteins, including MyD88, DAP12, and FcRγ. This study investigated the interaction between PTX and innate immune components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!