Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling.

Biochem Biophys Res Commun

Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD, USA.

Published: September 2010

Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic β-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/β-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952323PMC
http://dx.doi.org/10.1016/j.bbrc.2010.08.043DOI Listing

Publication Analysis

Top Keywords

wnt signaling
12
secreted frizzled-related
8
sfrp2 enhanced
8
wnt3a-mediated transcriptional
8
signaling
6
sfrp2
5
frizzled-related protein-2
4
protein-2 sfrp2
4
sfrp2 augments
4
augments canonical
4

Similar Publications

Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs.

View Article and Find Full Text PDF

Network Pharmacology Unveils Multi-Systemic Intervention of Panax notoginseng in Osteoporosis via Key Genes and Signaling Pathways.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Orthopaedics, Xiaolan People's Hospital of Zhongshan, Zhongshan, Guangdong Province, People's Republic of China.

Background: Panax notoginseng (Burk.) F. H.

View Article and Find Full Text PDF

Schizophrenia is one of the most debilitating mental illnesses affecting any age group. The mechanism and etiology of schizophrenia are extremely complex and multiple signaling pathways recruit genes implicated in the etiology of this disease. While the role of Wnt/β-catenin signaling in this disorder has been verified, the impact of long noncoding RNAs (lncRNAs) associated with this pathway has not been studied in schizophrenia.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary bone malignancy. The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has been implicated in bone destruction, tumor survival and metastases during OS. We examined the role of Dkk-1 in OS disease progression and explored strategies for targeting its activity.

View Article and Find Full Text PDF

Insights into age-related osteoporosis from senescence-based preclinical models and human accelerated aging paradigms.

Mech Ageing Dev

January 2025

Department of Medicine, Divisions of Geriatric Medicine and Gerontology, the Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota. Electronic address:

Preclinical models of age-related osteoporosis have been developed based on the accumulation and clearance of senescent cells. The former include animal models based on telomere dysfunction and focal radiation; the latter based on genetic and pharmacological targeting (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!