This study was aimed to explore the effect of arsenic trioxide (ATO) on proliferation and apoptosis of mantle cell lymphoma (MCL) cell lines and the underlying mechanisms of the apoptosis. MCL cell lines (jeko-1, mino, JVM-2) were treated with different concentrations of ATO, then growth profile of these cells were detected by MTT. Apoptosis of ATO-treated jeko-1 cells were detected by flow cytometry with Annexin V-FITC/PI double staining. The loss of mitochondrial membrane potential of ATO-treated jeko-1 cells were detected by FCM with DiOC₆(3) staining. The expressions of cyclin D1 and apoptosis related proteins MCL-1, BCL-2, PUMA, NOXA, cCaspase-3 (cleaved caspase-3), cCaspase-9 (cleaved caspase-9), cPARP (cleaved PARP) were detected by Western blot. The results indicated that ATO inhibited cell growth, induced apoptosis of MCL cells and disrupted mitochondrial membrane potential. ATO could decrease expressions of MCL-1, PUMA and cyclin D1, increase expressions of cPARP, cCaspase-3, cCaspase-9 and the expressions of BLC-2 and NOXA were not changed. It is concluded that ATO can induce cell growth arrest and apoptosis of MCL cells. The mitochondrial pathway plays a very important role in cell apoptosis.
Download full-text PDF |
Source |
---|
Cancer Lett
December 2024
Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan. Electronic address:
KRAS inhibitors sotorasib and adagrasib have been approved for the treatment of KRAS-mutant non-small cell lung cancer (NSCLC). However, the efficacy of single-agent treatments is limited, presumably due to multiple resistance mechanisms. To overcome these therapeutic limitations, combination strategies that potentiate the antitumor efficacy of KRAS inhibitors must be developed.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2024
MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China. Electronic address:
Disulfiram (DSF) and copper (Cu) in combination exhibit powerful anti-cancer effect on a variety of cancer cell lines. Here, we found that DSF/Cu facilitated the accumulation of intracellular reactive oxygen species (ROS), and induced ROS-dependent apoptosis accompanied by chromatin condensation and phosphatidylserine externalization in MCF-7 cells. DSF/Cu caused caspase-independent apoptosis by promoting the AIF translocation from mitochondria to nucleus.
View Article and Find Full Text PDFOncol Rep
February 2025
Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan.
BH3 mimetics are small‑molecule inhibitors of the antiapoptotic Bcl‑2 family and have therapeutic efficacy against hematological malignancies. BH3 mimetic A‑1331852 suppresses colorectal cancer cell proliferation. Progressive resistance to the widely used anticancer agent fluorouracil (5‑FU) is a key reason for colorectal cancer recurrence; therefore, the present study tested if A‑1331852 can suppress the proliferation of 5‑FU‑resistant colorectal cancer cells.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Zhongshan Hospital Institute of Clinical Science, Shanghai Medical College, Fudan University, Shanghai 200032, China. Electronic address:
B-cell lymphoma extra large (BCL-X) is an important anti-apoptotic protein of BCL-2 family. It is frequently overexpressed in various hematologic and solid tumors, often positively correlated with chemotherapy resistance in tumors. However, the clinical development of the small molecule BCL-X inhibitor ABT-263 has been challenged on account of its on-target and dose-limiting toxicity.
View Article and Find Full Text PDFEur J Med Chem
February 2025
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:
Myeloid cell leukemia-1 (MCL-1), a key anti-apoptotic protein within the BCL-2 family, is essential in regulating cell survival, particularly in cancer, where its overexpression is often linked to therapeutic resistance. This review begins with an overview of BCL-2-mediated apoptosis, highlighting the pivotal role of MCL-1 in cellular homeostasis. We then focus on the structure and function of MCL-1, elucidating how its unique structural features contribute to its function and interaction with pro-apoptotic proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!