Measures of genetic structure among individuals or populations collected at different spatial locations across a landscape are commonly used as surrogate measures of functional (i.e. demographic or genetic) connectivity. In order to understand how landscape characteristics influence functional connectivity, resistance surfaces are typically created in a raster GIS environment. These resistance surfaces represent hypothesized relationships between landscape features and gene flow, and are based on underlying biological functions such as relative abundance or movement probabilities in different land cover types. The biggest challenge for calculating resistance surfaces is assignment of resistance values to different landscape features. Here, we first identify study objectives that are consistent with the use of resistance surfaces and critically review the various approaches that have been used to parameterize resistance surfaces and select optimal models in landscape genetics. We then discuss the biological assumptions and considerations that influence analyses using resistance surfaces, such as the relationship between gene flow and dispersal, how habitat suitability may influence animal movement, and how resistance surfaces can be translated into estimates of functional landscape connectivity. Finally, we outline novel approaches for creating optimal resistance surfaces using either simulation or computational methods, as well as alternatives to resistance surfaces (e.g. network and buffered paths). These approaches have the potential to improve landscape genetic analyses, but they also create new challenges. We conclude that no single way of using resistance surfaces is appropriate for every situation. We suggest that researchers carefully consider objectives, important biological assumptions and available parameterization and validation techniques when planning landscape genetic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-294X.2010.04657.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!