A conductive and photocatalytic nanocomposite thin film comprising multiwalled carbon nanotubes (MWCNTs) and TiO2 nanoparticles is fabricated based on layer-by-layer (LbL) assembly in a nonpolar solvent, toluene. An amphiphilic surfactant, aerosol OT (AOT), is used to impart opposite surface charge onto MWCNTs and TiO2 in toluene. Our fabrication technique enables the incorporation of unoxidized MWCNTs into the nanocomposite thin films, and at the same time, provides a versatile method of fabricating conformal thin films over a large area. The physicochemical properties of MWCNT/TiO2 nanocomposite thin films, including composition and photocatalytic activity, can be varied by changing the concentration of AOT during assembly. The electrical properties of the nanocomposite film, specifically its sheet resistance and conductivity, can also be tuned through changing the assembly conditions. In addition, we demonstrate that the incorporation of MWCNTs within our films leads to a significant enhancement of the photocatalytic activity of TiO2. The conductivity and enhanced photocatalytic activity of MWCNT/TiO2 thin films make them promising for the generation of highly efficient dye-sensitized solar cells (DSSCs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am1004656 | DOI Listing |
Chemistry
December 2024
East China University of Science and Technology, School of Materials Science and Engineering, meilong Road, 200237, shanghai, CHINA.
Perovskite-based photodetectors (PDs) are broadly utilized in optical communication, non-destructive testing, and smart wearable devices due to their ability to convert light into electrical signals. However, toxicity and instability hold back their mass production and commercialization. The lead-free Cs2AgBiBr6 double perovskite film, promised to be an alternative, is fabricated by electrophoretic deposition (EPD), which compromises film quality.
View Article and Find Full Text PDFSci Rep
December 2024
Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.
RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Chemical Engineering Sciences, Foundation of Research and Technology- Hellas (FORTH/ICE-HT), Stadiou Street, Platani, Patras 26504, Greece.
Due to their outstanding electrical and thermal properties, graphene and related materials have been proposed as ideal candidates for the development of lightweight systems for thermoelectric applications. Recently, the nanolaminate architecture that entails alternation of continuous graphene monolayers and ultrathin polymer films has been proposed as an efficient route for the development of composites with impressive physicochemical properties. In this work, we present a novel layer-by-layer approach for the fabrication of highly ordered, flexible, heat-resistant, and electrically conductive freestanding graphene/polymer nanolaminates through alternating Marangoni-driven self-assembly of reduced graphene oxide (rGO) and poly(ether imide) (PEI) films.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:
The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute for Theoretical and Applied Electromagnetics RAS, Moscow 125412, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.
In this study, we have investigated the surface-enhanced Raman scattering (SERS) spectra of myoglobin on silver substrates with different morphology. The aim was to determine the optimal parameters of analyte and substrate preparation for obtaining of high-amplitude SERS spectra of proteins. It is shown that not only the morphology of the silver film, but also the method of analyte molecules deposition on the SERS substrate plays an important role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!