Photocatalytic and conductive MWCNT/TiO2 nanocomposite thin films.

ACS Appl Mater Interfaces

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Published: September 2010

A conductive and photocatalytic nanocomposite thin film comprising multiwalled carbon nanotubes (MWCNTs) and TiO2 nanoparticles is fabricated based on layer-by-layer (LbL) assembly in a nonpolar solvent, toluene. An amphiphilic surfactant, aerosol OT (AOT), is used to impart opposite surface charge onto MWCNTs and TiO2 in toluene. Our fabrication technique enables the incorporation of unoxidized MWCNTs into the nanocomposite thin films, and at the same time, provides a versatile method of fabricating conformal thin films over a large area. The physicochemical properties of MWCNT/TiO2 nanocomposite thin films, including composition and photocatalytic activity, can be varied by changing the concentration of AOT during assembly. The electrical properties of the nanocomposite film, specifically its sheet resistance and conductivity, can also be tuned through changing the assembly conditions. In addition, we demonstrate that the incorporation of MWCNTs within our films leads to a significant enhancement of the photocatalytic activity of TiO2. The conductivity and enhanced photocatalytic activity of MWCNT/TiO2 thin films make them promising for the generation of highly efficient dye-sensitized solar cells (DSSCs).

Download full-text PDF

Source
http://dx.doi.org/10.1021/am1004656DOI Listing

Publication Analysis

Top Keywords

thin films
20
nanocomposite thin
16
photocatalytic activity
12
mwcnt/tio2 nanocomposite
8
mwcnts tio2
8
thin
6
films
6
photocatalytic
5
nanocomposite
5
photocatalytic conductive
4

Similar Publications

High Performance of Cs2AgBiBr6 Perovskite-based Photodetectors by Adding DEAC.

Chemistry

December 2024

East China University of Science and Technology, School of Materials Science and Engineering, meilong Road, 200237, shanghai, CHINA.

Perovskite-based photodetectors (PDs) are broadly utilized in optical communication, non-destructive testing, and smart wearable devices due to their ability to convert light into electrical signals. However, toxicity and instability hold back their mass production and commercialization. The lead-free Cs2AgBiBr6 double perovskite film, promised to be an alternative, is fabricated by electrophoretic deposition (EPD), which compromises film quality.

View Article and Find Full Text PDF

High photothermal conversion efficiency of RF sputtered TiO Magneli phase thin films and its linear correlation with light absorption capacity.

Sci Rep

December 2024

Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.

RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.

View Article and Find Full Text PDF

Due to their outstanding electrical and thermal properties, graphene and related materials have been proposed as ideal candidates for the development of lightweight systems for thermoelectric applications. Recently, the nanolaminate architecture that entails alternation of continuous graphene monolayers and ultrathin polymer films has been proposed as an efficient route for the development of composites with impressive physicochemical properties. In this work, we present a novel layer-by-layer approach for the fabrication of highly ordered, flexible, heat-resistant, and electrically conductive freestanding graphene/polymer nanolaminates through alternating Marangoni-driven self-assembly of reduced graphene oxide (rGO) and poly(ether imide) (PEI) films.

View Article and Find Full Text PDF

Robust and ultra-thin nanocellulose/MXene composite film and its performance in efficient electricity-generation and sensing.

Int J Biol Macromol

December 2024

Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:

The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.

View Article and Find Full Text PDF

In this study, we have investigated the surface-enhanced Raman scattering (SERS) spectra of myoglobin on silver substrates with different morphology. The aim was to determine the optimal parameters of analyte and substrate preparation for obtaining of high-amplitude SERS spectra of proteins. It is shown that not only the morphology of the silver film, but also the method of analyte molecules deposition on the SERS substrate plays an important role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!