A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Liver-specific β-catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis. | LitMetric

Unlabelled: Beta-catenin plays important roles in liver physiology and hepatocarcinogenesis. While studying the role of β-catenin in diet-induced steatohepatitis, we recently found that liver-specific β-catenin knockout (KO) mice exhibit intrahepatic cholestasis. This study was undertaken to further characterize the role of β-catenin in biliary physiology. KO mice and wild-type (WT) littermates were fed standard chow or a diet supplemented with 0.5% cholic acid for 2 weeks. Chow-fed KO mice had higher serum and hepatic total bile acid levels and lower bile flow rate than WT mice. Expression levels of bile acid biosynthetic genes were lower and levels of major bile acid exporters were similar, which therefore could not explain the KO phenotype. Despite loss of the tight junction protein claudin-2, KO mice had preserved functional integrity of tight junctions. KO mice had bile canalicular morphologic abnormalities as evidenced by staining for F-actin and zona occludens 1. Electron microscopy revealed dilated and tortuous bile canaliculi in KO livers along with decreased canalicular and sinusoidal microvilli. KO mice on a cholic acid diet had higher hepatic and serum bile acid levels, bile ductular reaction, increased pericellular fibrosis, and dilated, misshapen bile canaliculi. Compensatory changes in expression levels of several bile acid transporters and regulatory genes were found in KO livers.

Conclusion: Liver-specific loss of β-catenin leads to defective bile canalicular morphology, bile secretory defect, and intrahepatic cholestasis. Thus, our results establish a critical role for β-catenin in biliary physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947599PMC
http://dx.doi.org/10.1002/hep.23801DOI Listing

Publication Analysis

Top Keywords

bile acid
20
bile
14
bile canalicular
12
intrahepatic cholestasis
12
role β-catenin
12
levels bile
12
liver-specific β-catenin
8
β-catenin knockout
8
mice
8
knockout mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!