Nuclear pore biogenesis into an intact nuclear envelope.

Chromosoma

Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.

Published: October 2010

Nuclear pore complexes (NPCs) serve as transport channels across the nuclear membrane, a double lipid bilayer that physically separates the nucleoplasm and cytoplasm of eukaryotic cells. New evidence suggests that the multiprotein nuclear pores also play a role in chromatin organization and gene expression. Given the importance of NPC function, it is not surprising that a growing list of human diseases and developmental defects have been linked to its malfunction. In order to fully understand the functional repertoire of NPCs and their essential role for nuclear organization, it is critical to determine the sequence of events that lead to the formation of nuclear pores. This is particularly relevant since NPC number, and possibly composition, are tightly linked to metabolic activity. Most of our knowledge is derived from NPC formation that occurs in dividing cells at the end of mitosis when the nuclear envelope (NE) and NPCs reform from disassembled precursors. However, NPC assembly also takes place during interphase into an intact NE. Importantly, this process is not restricted to dividing cells but also occurs during cell differentiation. Here, we will review aspects unique to this process, namely the regulation of nuclear expansion and the mechanisms of fusion between the outer and inner nuclear membranes. We will then discuss conserved and diverging mechanisms between post-mitotic and interphase assembly of the proteinaceous structure in light of recently published data.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00412-010-0289-2DOI Listing

Publication Analysis

Top Keywords

nuclear
10
nuclear pore
8
nuclear envelope
8
nuclear pores
8
dividing cells
8
pore biogenesis
4
biogenesis intact
4
intact nuclear
4
envelope nuclear
4
pore complexes
4

Similar Publications

Overcoming luminal breast cancer (BrCa) progression remains a critical challenge for improved overall patient survival. RUNX2 has emerged as a protein related to aggressiveness in triple-negative BrCa, however its role in luminal tumors remains elusive. We have previously shown that active FGFR2 (FGFR2-CA) contributes to increased tumor growth and that RUNX2 expression was high in hormone-independent mouse mammary carcinomas.

View Article and Find Full Text PDF

(), known for its aromatic leaves and rhizomes, is extensively used in traditional medicine to treat digestive issues, inflammation, pain, anxiety, and stress. The petroleum ether extract of isolates specific bioactive compounds using petroleum ether, a nonpolar solvent effective in dissolving nonpolar plant compounds. This extract potentially offers antimicrobial, anti-inflammatory, and analgesic benefits.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Cervical cancer is the second most common cancer in Indonesia, where traditional herbal treatments like <i>Zanthoxylum acanthopodium</i> (andaliman) are culturally used. Investigating protein biomarkers such as E7, pRb, EGFR and p16 can help assess the efficacy of these treatments. <b>Materials and Methods:</b> There were 5 groups in this study: 2 control groups (C- and C+) and 3 treatment groups (each receiving one of three doses).

View Article and Find Full Text PDF

(1) Background and aim: Aloe arborescens Mill. (A. arborescens) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties.

View Article and Find Full Text PDF

Isoniazid and rifampicin co-therapy are the main causes of anti-tuberculosis drug-induced liver injury (ATB-DILI) and acute liver failure, seriously threatening human health. However, its pathophysiology is not fully elucidated. Growing evidences have shown that fibroblast growth factors (FGFs) play a critical role in diverse aspects of liver pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!