In vivo behaviour of low-temperature calcium-deficient hydroxyapatite: comparison with deproteinised bovine bone.

Int Orthop

Department of Orthopaedic Surgery, Faculty of Medicine and University Hospital in Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic.

Published: October 2011

This study aims to evaluate in detail the biological osteoconductive properties of the low-temperature synthetic porous calcium-deficient hydroxyapatite and to compare it with the biological apatite. Bone reactions to granules of similar sizes of the low-temperature hydroxyapatite and commercially available non-sintered deproteinized bovine bone were compared. Two different temperatures were used to fabricate two batches of newly developed porous hydroxyapatite with different carbonate groups content and specific surface area. The histological analysis of specimens with histomorphometry was performed at different time after in vivo implantation. Based on histological analysis, the level of bone formation in the spaces between the implanted granules and through the interconnected pores of all implanted materials within a cortical region (bone area ingrowth 72-85 %) was several-fold higher than within a cancellous bone site (bone area ingrowth 16-28 %) at three and six months after implantation. Within the cancellous bone site, bone coverage of the implanted material at six months was significantly higher in hydroxyapatite material fabricated using low-temperature synthesis and subsequent processing at 150°C than in hydroxyapatite scaffold developed using low-temperature synthesis with subsequent processing at 700°C or deproteinized bovine bone. According to our study, the bioactive properties of the low-temperature calcium-deficient hydroxyapatite are comparable with the biological apatite. The favourable influence of a high specific surface area of a low-temperature calcium-deficient hydroxyapatite on in vivo bone formation was emphasized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174292PMC
http://dx.doi.org/10.1007/s00264-010-1113-6DOI Listing

Publication Analysis

Top Keywords

calcium-deficient hydroxyapatite
16
low-temperature calcium-deficient
12
bovine bone
12
bone
11
hydroxyapatite
8
bone study
8
properties low-temperature
8
biological apatite
8
deproteinized bovine
8
specific surface
8

Similar Publications

Biphasic calcium phosphate (BCP) is a bioceramic widely used in hard tissue engineering for bone replacement. BCP consists of β-tricalcium phosphate (β-TCP) - a highly soluble and resorbable phase - and hydroxyapatite (HA) - a highly stable phase, creating a balance between solubility and resorption, optimally supporting cell interactions and tissue growth. The β-TCP/HA ratio significantly affects the resorption, solubility, and cellular response, with a higher β-TCP ratio increasing resorption due to its solubility.

View Article and Find Full Text PDF

This study primarily focused on the acid erosion of enamel and dentin. A detailed examination of the X-ray diffraction data proves that the products of the acid-caused decay of enamel belong to the family of isomorphic bioapatites, especially calcium-deficient hydroxyapatites. They are on a trajectory towards less and less crystallized substances.

View Article and Find Full Text PDF

Interior bone-tissue regeneration and rapid tumor recurrence post-resection are critical challenges in osteosarcoma and other bone cancers. Conventional bone tissue engineering scaffolds lack inhibitory effects on bone tumor recurrence. Herein, multifunctional scaffolds (named DOX/PDA@CDHA) were designed through the spontaneous polymerization of Dopamine (PDA) on the surface of Calcium Deficient Hydroxyapatite (CDHA) scaffolds, followed by in situ loading of the chemotherapeutic drug Doxorubicin (DOX).

View Article and Find Full Text PDF

Background: The development of biomaterials capable of accelerating bone wound repair is a critical focus in bone tissue engineering. This study aims to evaluate the osteointegration and bone regeneration potential of a novel multilayer gelatin-supported Bone Morphogenetic Protein 9 (BMP-9) coated nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) composite biomaterials, focusing on the material-bone interface, and putting forward a new direction for the research on the interface between the coating material and bone.

Methods: The BMP-9 recombinant adenovirus (Adenovirus (Ad)-BMP-9/Bone Marrow Mesenchymal Stem Cells (BMSc)) was produced by transfecting BMSc and supported using gelatin (Ad-BMP-9/BMSc/Gelatin (GT).

View Article and Find Full Text PDF

Objective: Dental implants fabricated from titanium have several limitations and therefore, alternative materials that fulfil the criteria of successful dental implant (bioactivity and anti-bacterial activity) need to be considered. Polyether ether ketone (PEEK) has been suggested to replace titanium implants. However, this material needs surface modification to meet the appropriate criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!