The nonlinear process of stimulated Raman scattering is important for silicon photonics as it enables optical amplification and lasing. To understand the dynamics of silicon Raman amplifiers (SRAs), a numerical approach is generally employed, even though it provides little insight into the contribution of different SRA parameters to the signal amplification process. In this paper, we solve the coupled pump-signal equations analytically under realistic conditions, and derive an exact formula for the envelope of a signal pulse when picosecond optical pulses are amplified inside a SRA pumped by a continuous-wave laser beam. Our solution is valid for an arbitrary pulse shape and fully accounts for the Raman gain-dispersion effects, including temporal broadening and group-velocity reduction (a slow-light effect). It can be applied to any pumping scenario and leads to a simple analytic expression for the maximum optical delay produced by the Raman dispersion in a unidirectionally pumped SRA. We employ our analytical formulation to study the evolution of optical pulses with Gaussian, exponential, and Lorentzian shapes. The ability of a Gaussian pulse to maintain its shape through the amplifier makes it possible to realize soliton-like propagation of chirped Gaussian pulses in SRAs. We obtain analytical expressions for the required linear chirp and temporal width of a soliton-like pulse in terms of the net signal gain and the Raman-dispersion parameter. Our results are useful for optimizing the performance of SRAs and for engineering controllable signal delays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.18.018324 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!