Generation of 30-fs ultraviolet pulses by four-wave optical parametric chirped pulse amplification.

Opt Express

Department of Quantum Electronics, Vilnius University, Sauletekio Ave. 9, bldg.3, LT-10222 Vilnius, Lithuania.

Published: July 2010

We report on the generation of approximately 30-fs ultraviolet pulses with approximately 10 microJ energy by means of four-wave optical parametric chirped pulse amplification in fused silica. The four-wave optical parametric amplifier is pumped by the second-harmonic of the Ti:sapphire laser and is seeded by visible broadband chirped signal pulses. The idler pulses are produced in the ultraviolet by four-wave mixing and are compressed in a medium with normal group velocity dispersion.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.016096DOI Listing

Publication Analysis

Top Keywords

four-wave optical
12
optical parametric
12
generation 30-fs
8
30-fs ultraviolet
8
ultraviolet pulses
8
parametric chirped
8
chirped pulse
8
pulse amplification
8
pulses
4
four-wave
4

Similar Publications

The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.

View Article and Find Full Text PDF

Nanoscale thickness Octave-spanning coherent supercontinuum light generation.

Light Sci Appl

January 2025

Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.

Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.

View Article and Find Full Text PDF

Si metasurface supporting multiple quasi-BICs for degenerate four-wave mixing.

Nanophotonics

August 2024

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Article Synopsis
  • Dielectric metasurfaces with quasi-bound states in the continuum (qBICs) can boost field enhancement through narrow resonances in the visible and near-infrared ranges.
  • A new silicon-on-silica metasurface design supports up to four qBIC resonances by using an elliptical cylinder array with varied symmetry-breaking shapes.
  • The study showcases the nonlinear process of four-wave mixing and highlights the potential applications in areas like information multiplexing and multi-wavelength sensing using the unique geometric control of qBICs.
View Article and Find Full Text PDF

Gallium phosphide (GaP) has been increasingly prioritized, fueled by the enormous demands in visible light applications such as biomedical and quantum technologies. GaP has garnered tremendous attention in nanophotonics thanks to its high refractive index, indirect bandgap width of 2.26 eV, lattice perfectly matched with silicon, and omnipotent and competitive nonlinear optical properties.

View Article and Find Full Text PDF

Strongly driven nonlinear optical processes such as spontaneous parametric down-conversion and spontaneous four-wave mixing can produce multiphoton nonclassical beams of light which have applications in quantum information processing and sensing. In contrast to the low-gain regime, new physical effects arise in a high-gain regime due to the interactions between the nonclassical light and the strong pump driving the nonlinear process. Here, we describe and experimentally observe a gain-induced group delay between the multiphoton pulses generated in a high-gain type-II spontaneous parametric down-conversion source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!