A conserved domain in the coronavirus membrane protein tail is important for virus assembly.

J Virol

School of Life Sciences, The Biodesign Institute, P.O. Box 875401, Arizona State University, Tempe, AZ 85287-5401, USA.

Published: November 2010

Coronavirus membrane (M) proteins play key roles in virus assembly, through M-M, M-spike (S), and M-nucleocapsid (N) protein interactions. The M carboxy-terminal endodomain contains a conserved domain (CD) following the third transmembrane (TM) domain. The importance of the CD (SWWSFNPETNNL) in mouse hepatitis virus was investigated with a panel of mutant proteins, using genetic analysis and transient-expression assays. A charge reversal for negatively charged E(121) was not tolerated. Lysine (K) and arginine (R) substitutions were replaced in recovered viruses by neutrally charged glutamine (Q) and leucine (L), respectively, after only one passage. E121Q and E121L M proteins were capable of forming virus-like particles (VLPs) when coexpressed with E, whereas E121R and E121K proteins were not. Alanine substitutions for the first four or the last four residues resulted in viruses with significantly crippled phenotypes and proteins that failed to assemble VLPs or to be rescued into the envelope. All recovered viruses with alanine substitutions in place of SWWS residues had second-site, partially compensating, changes in the first TM of M. Alanine substitution for proline had little impact on the virus. N protein coexpression with some M mutants increased VLP production. The results overall suggest that the CD is important for formation of the viral envelope by helping mediate fundamental M-M interactions and that the presence of the N protein may help stabilize M complexes during virus assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953170PMC
http://dx.doi.org/10.1128/JVI.01131-10DOI Listing

Publication Analysis

Top Keywords

virus assembly
12
conserved domain
8
coronavirus membrane
8
recovered viruses
8
alanine substitutions
8
virus
5
proteins
5
domain coronavirus
4
protein
4
membrane protein
4

Similar Publications

Phytochemical-based nanosystems: recent advances and emerging application in antiviral photodynamic therapy.

Nanomedicine (Lond)

January 2025

Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia.

Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections.

View Article and Find Full Text PDF

Phosphorylation of PA at serine 225 enhances viral fitness of the highly pathogenic H5N1 avian influenza virus in mice.

Vet Microbiol

January 2025

Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.

Currently, there is increasing spillover of highly pathogenic H5N1 avian influenza virus (AIV) to mammals, raising a concern of pandemic threat about this virus. Although the function of PA protein of the influenza virus is well understood, the understanding of how phosphorylation regulates this protein and influenza viral life cycle is still limited. We previously identified PA S225 as the phosphorylation site in the highly pathogenic H5N1 AIV.

View Article and Find Full Text PDF

Since the 1990s, the Pacific oyster has faced significant mortality, which has been associated with the detection of the Ostreid Herpesvirus type 1 (OsHV-1). Due to the complex genomic architecture and the presence of multiple genomic isomers, short-read sequencing using Illumina method struggles to accurately assemble tandem and repeat regions and to identify and characterize large structural variations in the OsHV-1 genome. Third-generation sequencing technologies, as long-read real-time nanopore sequencing from Oxford Nanopore Technologies (ONT), offer new possibilities for OsHV-1 whole-genome analysis.

View Article and Find Full Text PDF

The viral protein mutations can modify virus-host interactions during virus evolution, and thus alter the extent of infection or pathogenicity. Studies indicate that nucleocapsid (N) protein of SARS-CoV-2 participates in viral genome assembly, intracellular signal regulation and immune interference. However, its biological function in viral evolution is not well understood.

View Article and Find Full Text PDF

Disassembly of Virus-Like Particles and the Stabilizing Role of the Nucleic Acid Cargo.

J Phys Chem B

January 2025

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

In many simple viruses and virus-like particles, the protein capsid self-assembles around a nucleic-acid genome. Although the assembly process has been studied in detail, relatively little is known about how the capsid disassembles, a potentially important step for infection (in viruses) or cargo delivery (in virus-like particles). We investigate capsid disassembly using a coarse-grained molecular dynamics model of a = 1 dodecahedral capsid and an RNA-like polymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!