Methylene blue-mediated photodynamic inactivation as a novel disinfectant of enterovirus 71.

J Antimicrob Chemother

Department of Dermatology, Graduated Institute of Clinical Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan, Republic of China.

Published: October 2010

Objectives: We tested whether methylene blue, an inexpensive and safe photosensitizer, is feasible for photodynamic inactivation of enterovirus 71 (EV71) in the environment.

Methods: By escalating light doses and photosensitizer concentrations, photoinactivation of EV71 and other enteroviruses was examined in vitro. Viral transmission in the environment was simulated with a neonatal mouse model in vivo. Possible mechanisms were analysed with alterations of viral DNA and proteins after treatments.

Results: Photodynamic inactivation of EV71 in suspensions occurred in a dose-dependent manner. The optimal condition for photoinactivating EV71 required a light dose of 200 J/cm(2) in the presence of methylene blue. This photodynamic condition was also able to inactivate other enteroviruses, including poliovirus 1 and coxsackieviruses A2, A3, A16 and B3. In an imitation environment, EV71 spread on a solid surface was inactivated by methylene blue-mediated photodynamic inactivation and prevented EV71 transmission to mice. Western blot and RT-PCR analysis indicated that both the viral proteins and the genome were disrupted after photodynamic inactivation.

Conclusions: Methylene blue-mediated photodynamic inactivation may provide a novel way to eliminate environmentally contaminated sources of EV71 to prevent infection.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkq301DOI Listing

Publication Analysis

Top Keywords

photodynamic inactivation
20
methylene blue-mediated
12
blue-mediated photodynamic
12
methylene blue
8
photodynamic
7
ev71
7
methylene
5
inactivation
5
inactivation novel
4
novel disinfectant
4

Similar Publications

Photodynamic bactericidal nanomaterials in food packaging: From principle to application.

J Food Sci

January 2025

Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.

Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.

View Article and Find Full Text PDF

Insecticidal and Bactericidal Activities of Vahl and Molecular Docking Analysis of Insect Acetylcholinesterase.

Turk J Pharm Sci

January 2025

University of Tlemcen, Faculty of Science, Department of Chemistry, Laboratory of Natural and Bioactive Substances, Tlemcen, Algeria.

Objectives: This study focused on the phytochemical, insecticidal, and bactericidal activities of Vahl, as well as molecular docking analysis of an acetylcholinesterase (AChE) inhibitor as a promising natural insecticide.

Materials And Methods: The leaves of were successively extracted with n-hexane, acetone, and methanol. Silica gel column chromatography of the methanol extract yielded compound 1.

View Article and Find Full Text PDF

Multifunctional porphyrinic metal-organic framework-based nanoplatform regulating reactive oxygen species achieves efficient imaging-guided cascaded nanocatalytic therapy.

J Colloid Interface Sci

January 2025

Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:

The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.

View Article and Find Full Text PDF

Can α-Mangostin and Photodynamic Therapy Support Ciprofloxacin in the Inactivation of Uropathogenic and Strains?

Int J Mol Sci

December 2024

Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland.

Multidrug-resistant bacteria represent a significant challenge in the treatment of bacterial infections, often leading to therapeutic failures. This issue underlines the need to develop strategies that improve the efficacy of conventional antibiotic therapies. In this study, we aimed to assess whether a plant-derived compound, α-mangostin, and photodynamic therapy (PDT) could enhance the antibacterial activity of ciprofloxacin against uropathogenic strains of and .

View Article and Find Full Text PDF

Multicationic ruthenium phthalocyanines as photosensitizers for photodynamic inactivation of multiresistant microbes.

Eur J Med Chem

December 2024

Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. Electronic address:

Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!