Objectives: We tested whether methylene blue, an inexpensive and safe photosensitizer, is feasible for photodynamic inactivation of enterovirus 71 (EV71) in the environment.
Methods: By escalating light doses and photosensitizer concentrations, photoinactivation of EV71 and other enteroviruses was examined in vitro. Viral transmission in the environment was simulated with a neonatal mouse model in vivo. Possible mechanisms were analysed with alterations of viral DNA and proteins after treatments.
Results: Photodynamic inactivation of EV71 in suspensions occurred in a dose-dependent manner. The optimal condition for photoinactivating EV71 required a light dose of 200 J/cm(2) in the presence of methylene blue. This photodynamic condition was also able to inactivate other enteroviruses, including poliovirus 1 and coxsackieviruses A2, A3, A16 and B3. In an imitation environment, EV71 spread on a solid surface was inactivated by methylene blue-mediated photodynamic inactivation and prevented EV71 transmission to mice. Western blot and RT-PCR analysis indicated that both the viral proteins and the genome were disrupted after photodynamic inactivation.
Conclusions: Methylene blue-mediated photodynamic inactivation may provide a novel way to eliminate environmentally contaminated sources of EV71 to prevent infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkq301 | DOI Listing |
J Food Sci
January 2025
Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.
Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.
View Article and Find Full Text PDFTurk J Pharm Sci
January 2025
University of Tlemcen, Faculty of Science, Department of Chemistry, Laboratory of Natural and Bioactive Substances, Tlemcen, Algeria.
Objectives: This study focused on the phytochemical, insecticidal, and bactericidal activities of Vahl, as well as molecular docking analysis of an acetylcholinesterase (AChE) inhibitor as a promising natural insecticide.
Materials And Methods: The leaves of were successively extracted with n-hexane, acetone, and methanol. Silica gel column chromatography of the methanol extract yielded compound 1.
J Colloid Interface Sci
January 2025
Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:
The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland.
Multidrug-resistant bacteria represent a significant challenge in the treatment of bacterial infections, often leading to therapeutic failures. This issue underlines the need to develop strategies that improve the efficacy of conventional antibiotic therapies. In this study, we aimed to assess whether a plant-derived compound, α-mangostin, and photodynamic therapy (PDT) could enhance the antibacterial activity of ciprofloxacin against uropathogenic strains of and .
View Article and Find Full Text PDFEur J Med Chem
December 2024
Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. Electronic address:
Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!