The triceps surae muscle-tendon complex has been modelled by many authors seeking to estimate the change in muscle length that occurs in locomotion. The objective of the present study is to assess to what extent the commonly adopted assumptions of foot rigidity and pure sagittal motion are acceptable. A model of the triceps surae muscle-tendon complex was implemented by taking into account all possible movements between forefoot and rear foot. Length and velocity curves from a 3-dimensional gait analysis were obtained from six normal subjects. The angle between forefoot and rear foot proved to be changeable with stride (11.8 degrees +/- 4.7 SE). The effect on the length and velocity estimation was analysed by comparing the curves obtained by our model to those obtained by a model in which the foot is considered to be a rigid body. Significant differences were found for the soleus muscle length at late stance/early swing and late swing phases, and for the soleus muscle velocity at early stance phase. The length and velocity curves were also compared to curves calculated on a pure sagittal projection. No changes were observed, except for an offset of 1-3 mm caused by the general external rotation of the foot (which is also present in standing). The curves appeared superimposable when referred to the standing upright position. Care needs to be taken, however, when extending the above results to the clinical application, where foot deformity and deviation from a normal pattern of motion can occur.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/1050-6411(96)00001-6 | DOI Listing |
J Appl Physiol (1985)
January 2025
Experimental Biomechanics Group, Institute of Structural Mechanics and Dynamics in Aerospace Engineering, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Germany.
Characterizing individual muscle behavior is crucial for understanding joint function and adaptations to exercise, diseases, or aging. Shear wave elastography (SWE) is a promising tool for measuring the intrinsic material properties of muscle. This study assessed the passive and active shear modulus of the triceps surae muscle group in 14 volunteers (7 females, 25.
View Article and Find Full Text PDFJ Pediatr Orthop
January 2025
Jackie and Gene Autry Orthopedic Center, Children's Hospital Los Angeles, Los Angeles, CA.
Background: Orthopaedic surgical intervention in children with Charcot-Marie-Tooth (CMT) often includes triceps surae lengthening (TSL) and foot procedures to address instability and pain due to equinus and cavovarus deformities. These surgeries may unmask underlying weakness in this progressive disease causing increased calcaneal pitch and excessive dorsiflexion in terminal stance leading to crouch. The purpose of this study was to evaluate changes in ankle function during gait following TSL surgery in children with CMT.
View Article and Find Full Text PDFTransl Sports Med
December 2024
Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital Bispebjerg-Frederiksberg, Copenhagen, Denmark.
Persisting deficits are often seen years after an Achilles tendon rupture despite dedicated rehabilitation efforts. A possible reason for reduced function is elongation of the tendon and accompanying shortening of the muscle. Strength training with focus on the eccentric component of loading leads to longer muscle fascicles in healthy persons.
View Article and Find Full Text PDFJ Orthop Res
January 2025
Department of Physical Therapy, University of Delaware, Newark, Delaware, USA.
A high proportion of individuals with Achilles tendinopathy continue to demonstrate long-term symptoms and functional impairments after exercise treatment. Thus, there is a need to delineate patient presentations that may require alternative treatment. The objective of this study was to evaluate if the presence of metabolic risk factors relates to tendon symptoms, psychological factors, triceps surae structure, and lower limb function in individuals with Achilles tendinopathy.
View Article and Find Full Text PDFBr J Sports Med
January 2025
Department of Movement Science, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!