A perhydro-26-membered hexaazamacrocycle-based silica (L(1)GlySil) stationary phase for high-performance liquid chromatography (HPLC) was prepared using 3-glycidoxypropyltrimethoxysilane as coupling reagent. The structure of new material was characterized by infrared spectroscopy, elemental analysis and thermogravimetric analysis. The chromatographic performance and retention mechanism of the new phase were evaluated in reversed-phase (RP) and normal-phase (NP) modes using different solute probes including aromatic compounds, organophosphorus pesticides, carbamate pesticides and phenols. The results showed that L(1)GlySil was a sort of multimode-bonded stationary phase with excellent chromatographic properties. The new phase could provide various action sites for different solutes, such as hydrophobic, hydrogen bonding, pi-pi, dipole-dipole interactions and acid-base equilibrium. The presence of phenyl rings, secondary amino groups and alkyl linkers in the resulting material made it suitable for the separation of above-mentioned analytes by multimode retention mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2010.07.064DOI Listing

Publication Analysis

Top Keywords

stationary phase
12
high-performance liquid
8
liquid chromatography
8
phase
5
multiple-function stationary
4
phase based
4
based perhydro-26-membered
4
perhydro-26-membered hexaazamacrocycle
4
hexaazamacrocycle high-performance
4
chromatography perhydro-26-membered
4

Similar Publications

Speech Enhancement for Cochlear Implant Recipients using Deep Complex Convolution Transformer with Frequency Transformation.

IEEE/ACM Trans Audio Speech Lang Process

February 2024

CRSS: Center for Robust Speech Systems; Cochlear Implant Processing Laboratory (CILab), Department of Electrical and Computer Engineering, University of Texas at Dallas, USA.

The presence of background noise or competing talkers is one of the main communication challenges for cochlear implant (CI) users in speech understanding in naturalistic spaces. These external factors distort the time-frequency (T-F) content including magnitude spectrum and phase of speech signals. While most existing speech enhancement (SE) solutions focus solely on enhancing the magnitude response, recent research highlights the importance of phase in perceptual speech quality.

View Article and Find Full Text PDF

The aim of this work was to develop and validate a rapid dispersive-solid-phase extraction method for the quantification of pyrrolizidine alkaloids (PA) from plant extracts. The method was focused on the significant removal of the intricate matrix to ensure good sensitivity for the subsequent instrumental analysis of PA. This was achieved by employing nano-zirconium silicate (NZS) as a dispersive-SPE sorbent.

View Article and Find Full Text PDF

Serving as a dedicated process analytical technology (PAT) tool for biomass monitoring and control, the capacitance probe, or dielectric spectroscopy, is showing great potential in robust pharmaceutical manufacturing, especially with the growing interest in integrated continuous bioprocessing. Despite its potential, challenges still exist in terms of its accuracy and applicability, particularly when it is used to monitor cells during stationary and decline phases. In this study, data pre-processing methods were first evaluated through cross-validation, where the first-order derivative emerged as the most effective method to diminish variability in prediction accuracy across different training datasets.

View Article and Find Full Text PDF

This work aims to provide a basis for the enhancement of fucoxanthin (FCX) and eicosapentaenoic acid (EPA) biosynthesis in the microalga Phaeodactylum tricornutum using metabolomics and computational biology. To achieve this, both targeted (UHPLC and GC-FID) and untargeted (FTIR and NMR) analyses were conducted throughout various stages of cell cultivation. Targeted analyses revealed that EPA concentrations peaked at the end of the logarithmic growth phase, while fucoxanthin levels remained consistent from the onset of this phase through to the stationary phase.

View Article and Find Full Text PDF

How do red foxes (Vulpes vulpes) explore their environment? Characteristics of movement patterns in time and space.

Mov Ecol

January 2025

Wildlife Research Unit Baden-Württemberg, LAZBW, Atzenberger Weg 99, 88326, Aulendorf, Germany.

Background: Many animals must adapt their movements to different conditions encountered during different life phases, such as when exploring extraterritorial areas for dispersal, foraging or breeding. To better understand how animals move in different movement phases, we asked whether movement patterns differ between one way directed movements, such as during the transient phase of dispersal or two way exploratory-like movements such as during extraterritorial excursions or stationary movements.

Methods: We GPS collared red foxes in a rural area in southern Germany between 2020 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!