A prototype hand-held Raman sensor for the in situ characterization of meat quality.

Appl Spectrosc

Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstr. 36, D-10623 Berlin, Germany.

Published: August 2010

As a tool for the in situ characterization of meat quality, a hand-held Raman sensor head using an excitation wavelength of 671 nm was developed. A microsystem-based external cavity diode laser module was integrated into the sensor head and attached to a Raman probe, which is equipped with lens optics for excitation and signal collection as well as a Raman filter stage for Rayleigh rejection. The Raman signal was guided by an optical fiber to the detection unit, which was in the initial phase a laboratory spectrometer with a charge-coupled device (CCD) detector. The laser and the sensor head were characterized in terms of stability and performance for in situ Raman investigations. Raman spectra of meat were obtained with 35 mW within 5 seconds or less, ensuring short measuring times for the hand-held device. In a series of measurements with raw and packaged pork meat, the Raman sensor head was shown to detect microbial spoilage on the meat surface, even through the packaging foil.

Download full-text PDF

Source
http://dx.doi.org/10.1366/000370210792081028DOI Listing

Publication Analysis

Top Keywords

sensor head
16
raman sensor
12
raman
8
hand-held raman
8
situ characterization
8
characterization meat
8
meat quality
8
sensor
5
meat
5
prototype hand-held
4

Similar Publications

Effects of an Avatar Control on VR Embodiment.

Bioengineering (Basel)

January 2025

Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.

The motion control of the virtual avatar enhances a sense of embodiment in a virtual reality (VR). Yet, the detailed relationship between motion control, assigned tasks, and the sense of embodiment remains unclear. We aim to investigate the relationships between degrees of control on a full-body avatar and three elements of the sense of embodiment: the sense of self-location, agency, and ownership in standalone and interaction tasks.

View Article and Find Full Text PDF

Miniaturized inertial sensor based on high-resolution dual atom interferometry.

Rev Sci Instrum

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.

View Article and Find Full Text PDF

Objectives: Due to the absence of objective diagnostic criteria, tinnitus diagnosis primarily relies on subjective assessments. However, its neuropathological features can be objectively quantified using electroencephalography (EEG). Despite the existing research, the pathophysiology of tinnitus remains unclear.

View Article and Find Full Text PDF

Nanocapsuled Neutrophil Extracellular Trap Scavenger Combating Chronic Infectious Bone Destruction Diseases.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Chronic infectious bone destruction diseases, such as periodontitis, pose a significant global health challenge. Repairing the bone loss caused by these chronic infections remains challenging. In addition to pathogen removal, regulating host immunity is imperative.

View Article and Find Full Text PDF

Phytic Acid-Induced Gradient Hydrogels for Highly Sensitive and Broad Range Pressure Sensing.

Adv Mater

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!