Objective: To investigate the distribution of HPV 16 variants in Han women patients without Cervical intraepithelial neoplasia in the diagnosis and treatment center for cervical disease, department of Obstetrics and Gynecology in China-Japan friendship hospital with HPV 16 E5 sequence phylogenetic analysis.

Methods: PCR amplification of HPV 16 E5 sequences and sequenced. The association between variations types and different cervical lesions was analyzed.

Results: In this research, We first found that variant classification based on HPV 16 E5 DNA sequence (236 bp) alone had high rate of accuracy. In addition, for the first time, our research revealed that single-4075T can distinguished the As variant from all other variants.

Conclusion: If E5 sequence was used for phylogenetic analysis, it will greatly reduce the experimental costs and improve efficiency and cost-effectiveness. For the first time, our research revealed that single 4075T can distinguished the As variant from all other variants.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sequence phylogenetic
8
time revealed
8
distinguished variant
8
[human papillomavirus
4
papillomavirus type
4
sequence
4
type sequence
4
sequence evolution
4
evolution analysis]
4
analysis] objective
4

Similar Publications

The Mycobacterium avium complex (MAC) is a group of closely related nontuberculous mycobacteria that can cause various diseases in humans. In this study, genome sequencing, comprehensive genomic analysis, and antimicrobial susceptibility testing of 66 MAC clinical isolates from King Chulalongkorn Memorial Hospital, Bangkok, Thailand were carried out. Whole-genome average nucleotide identity (ANI) revealed the MAC species distribution, comprising 54 (81.

View Article and Find Full Text PDF

Hotspots of genetic change in Yersinia pestis.

Nat Commun

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.

The relative contributions of mutation rate variation, selection, and recombination in shaping genomic variation in bacterial populations remain poorly understood. Here we analyze 3318 Yersinia pestis genomes, spanning nearly a century and including 2336 newly sequenced strains, to shed light on the patterns of genetic diversity and variation distribution at the population level. We identify 45 genomic regions ("hot regions", HRs) that, although comprising a minor fraction of the genome, are hotbeds of genetic variation.

View Article and Find Full Text PDF

Chromosome-level genome assembly of Salvia sclarea.

Sci Data

January 2025

Department of Crop Science, Chungnam National University, Daejeon, 34134, Korea.

Salvia sclarea is a medicinal herb from the Lamiaceae family, valued for its essential oil which contains sclareol, linalool, linalyl acetate, and other compounds. Despite its extensive use, the genetic mechanisms of S. sclarea are not well understood.

View Article and Find Full Text PDF

Isospora tiedetopetei n. sp. (Chromista: Apicomplexa: Eimeriidae) from black-goggled tanagers Trichothraupis melanops (Vieillot, 1818) (Passeriformes: Thraupidae: Tachyphoninae) in South America.

Parasitol Int

January 2025

Departamento de Biologia Animal, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465 km 7, 23897-000 Seropédica, Rio de Janeiro, Brazil.

Black-goggled tanagers Trichothraupis melanops (Vieillot, 1818) are passerine birds commonly observed in the Brazilian Atlantic Forest, Argentina and Paraguay. Tanagers are among the passerines with the highest prevalence and density of coccidian parasites, mainly due to their frugivorous feeding habits that favor fecal-oral transmission. In this context, the current study identifies a new species of Isospora Schneider, 1881 parasitizing black-goggled tanagers captured in the Itatiaia National Park, a protected area with a high degree of vulnerability in Southeastern Brazil.

View Article and Find Full Text PDF

Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:

Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!