Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Successful fertilization is tightly regulated by capacitation and decapacitation processes. Without appropriate decapacitation regulation, sperm would undergo a spontaneous acrosome reaction which leads to loss of fertilization ability. Seminal plasma is known to negatively regulate sperm capacitation. However, the suppressive mechanisms still remain unclear. In this study, we demonstrate the decapacitation mechanism of mouse seminal vesicle autoantigen (SVA) might target membrane sphingomyelin (SPM) and regulate plasma membrane Ca(2+)-ATPase (PMCA) activity. The SVA was shown to suppress sperm capacitation induced by a broad panel of capacitation factors (bovine serum albumin (BSA), PAF, and cyclodextrin (CD)). Furthermore, SVA significantly decreased [Ca(2+)](i) and NaHCO(3)-induced [cAMP](i). Cyclic AMP agonists bypassed the SVA's suppressive ability. Importantly, the SVA may regulate PMCA activity which was evidenced by the fact that the SVA decreased the [Ca(2+)](i) and intracellular pH (pH(i)) of sperm; meanwhile, a PMCA inhibitor (carboxyeosin) could reverse SVA's suppression of [Ca(2+)](i). The potential target of the SVA on membrane SPM/lipid rafts was highlighted by the high binding affinity of SPM-SVA (with a K(d) of ~3 µM) which was close to the IC(50) of SVA's suppressive activity. Additionally, treatment of mink lung epithelial cells with the SVA enhanced plasminogen activator inhibitor (PAI)-1 expression stimulated by tumor growth factor (TGF)-β and CD. These observations supported the membrane lipid-raft targeting of SVA. In summary, in this paper, we demonstrate that the decapacitation mechanism of the SVA might target membrane sphingolipid SPM and regulate PMCA activity to lower [Ca(2+)](i), thereby decreasing the [cAMP](i) level and preventing sperm pre-capacitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.22844 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!