Concise and very efficient synthesis of the N-methylwelwistatin tetracyclic core based on an anionic domino process.

Org Biomol Chem

Departmento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense.

Published: October 2010

An efficient synthesis of the N-methylwelwistatin tetracyclic core in only two steps from Kornfeld's ketone is described, whose key transformation involves the generation of a fused bicyclo[4.3.1]decane ring system through a one-pot sequence comprising a Michael-intramolecular aldolization anionic domino process and a DBU-promoted hydrolysis of the N-pivaloyl protecting group. Besides providing the most efficient synthesis of the welwistatin core to date, this method has the advantage of installing an oxygenated function at the welwistatin D ring.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0ob00382dDOI Listing

Publication Analysis

Top Keywords

efficient synthesis
12
synthesis n-methylwelwistatin
8
n-methylwelwistatin tetracyclic
8
tetracyclic core
8
anionic domino
8
domino process
8
concise efficient
4
core based
4
based anionic
4
process efficient
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Low-energy photoredox catalysis has gained significant attention in developing organic transformations due to its ability to achieve high penetration depth and minimum health risks. Herein, we disclose a red-light ( = 640 nm)-mediated C-3 formylation of indoles utilizing a helical carbenium ion as a photocatalyst and 2,2-dimethoxy-,-dimethylethanamine as a formylating source. These protocols exhibit a broad substrate scope under mild conditions with efficient scalability for the synthesis of C-3 formylated indoles.

View Article and Find Full Text PDF

Phosphorus (P) and potassium (K) play important roles in plant metabolism and hydraulic balance, respectively, while calcium (Ca) and magnesium (Mg) are important components of cell walls. Although significant amounts of these nutrients are found in wood, relatively little is known on how the wood concentrations of these nutrients are related to other wood traits, or on the factors driving the resorption of these nutrients within stems. We measured wood nutrient (i.

View Article and Find Full Text PDF

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

Fundamentals of bio-based technologies for selective metal recovery from bio-leachates and liquid waste streams.

Front Bioeng Biotechnol

January 2025

Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria.

The number of metal-containing waste streams resulting from electronic end-of life products, metallurgical by-products, and mine tailings to name but a few, is increasing worldwide. In recent decades, the potential to exploit these waste streams as valuable secondary resources to meet the high demand of critical and economically important raw materials has become more prominent. In this review, fundamental principles of bio-based metal recovery technologies are discussed focusing on microbial metabolism-dependent and metabolism-independent mechanisms as sustainable alternatives to conventional chemical metal recovery methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!