Ca(2+) and Sr(2+) entry pathways activated by pro-inflammatory agonists FMLP, LTB(4) and PAF have been compared to thapsigargin in human neutrophils. 2-APB (10microM) increased Ca(2+) influx and to a greater extent in agonist than in thapsigargin stimulated neutrophils. This action of 2-APB was specific to Ca(2+) because 2-APB did not augment Sr(2+) entry in agonist and thapsigargin stimulated neutrophils. This suggests that Ca(2+) and Sr(2+) entry can be used to discriminate between receptor and non-receptor (store)-operated Ca(2+) influx. Our data show for the first time that Pyr3 whilst partially inhibiting agonist induced Ca(2+) influx almost completely abolished Ca(2+) influx after thapsigargin stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellimm.2010.07.009 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.
: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.
View Article and Find Full Text PDFJ Mol Cell Biol
January 2025
Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.
View Article and Find Full Text PDFRedox Biol
January 2025
Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile. Electronic address:
Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC).
View Article and Find Full Text PDFFunction (Oxf)
January 2025
Institute for Integrative Physiology, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL. 60637, USA.
Patients with obstructive sleep apnea (OSA) experience chronic intermittent hypoxia (CIH). OSA patients and CIH-treated rodents exhibit overactive sympathetic nervous system and hypertension, mediated through hyperactive carotid body (CB) chemoreflex. Activation of olfactory receptor 78 (Olfr78) by hydrogen sulfide (H2S) is implicated in CB activation and sympathetic nerve responses to CIH, but the downstream signaling pathways remain unknown.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
The spatial propagation of neuronal activity within neuronal circuits, which is associated with brain functions, such as memory and learning, is regulated by external stimuli. Conventional external stimuli, such as electrical inputs, pharmacological treatments, and optogenetic modifications, have been used to modify neuronal activity. However, these methods are tissue invasive, have insufficient spatial resolution, and cause irreversible gene modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!