Innovation is essential for the identification of novel pharmacological therapies to meet the treatment needs of patients with psychiatric disorders. However, over the last 20 yr, in spite of major investments targets falling outside the classical aminergic mechanisms have shown diminished returns. The disappointments are traced to failures in the target identification and target validation effort, as reflected by the poor ability of current bioassays and animal models to predict efficacy and side-effects. Mismatch between disease biology and how psychiatric diseases are categorized has resulted in clinical trials of highly specific agents in heterogeneous patients, leading to variable treatment effects and failed studies. As drug hunters, one sees the opportunity to overhaul the pharmaceutical research and development (R&D) process. Improvements in both preclinical and clinical translational research need to be considered. Linking pharmacodynamic markers with disease biology should provide more predictive and innovative early clinical trials which in turn will increase the success rate of discovering new medicines. However, to exploit these exciting scientific discoveries, pharmaceutical companies need to question the conventional drug research and development model which is silo-driven, non-integrative across the confines of a company, non-disclosing across the pharmaceutical industry, and often independent from academia. This leads to huge redundancy in effort and lack of contextual learning in real time. Nevertheless, there are signs that drug discovery in the 21st century will see more intentional government, academic and industrial collaborations to overcome the above challenges that could eventually link mechanistic disease biology to segments of patients, affording them the benefits of rational and targeted therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1461145710000866 | DOI Listing |
Genet Epidemiol
January 2025
Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.
Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).
View Article and Find Full Text PDFFree Radic Res
January 2025
Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.
View Article and Find Full Text PDFPostgrad Med J
January 2025
Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.
Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.
View Article and Find Full Text PDFExpert Rev Proteomics
January 2025
Skolkovo Institute of Science and Technology, Moscow, Russian Federation.
Introduction: Identifying early risks of developing Alzheimer's disease (AD) is a major challenge as the number of patients with AD steadily increases and requires innovative solutions. Current molecular diagnostic modalities, such as cerebrospinal fluid (CSF) testing and positron emission tomography (PET) imaging, exhibit limitations in their applicability for large-scale screening. In recent years, there has been a marked shift toward the development of blood plasma-based diagnostic tests, which offer a more accessible and clinically viable alternative for widespread use.
View Article and Find Full Text PDFMedComm (2020)
January 2025
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!