Pulmonary vascular responses elicited by hypoxia and NO-cGMP signaling are potentially influenced by ROS and redox mechanisms that change during the progression of disease processes. Our studies in endothelium-rubbed bovine pulmonary arteries suggest increased glucose-6-phosphate dehydrogenase levels (compared to coronary arteries) seem to maintain a tonic peroxide-mediated relaxation removed by hypoxia through NADPH fueling superoxide generation from Nox oxidase. The activities of glucose-6-phosphate dehydrogenase, oxidases (i.e., Nox4), and systems metabolizing superoxide and peroxide markedly influence hypoxic pulmonary vasoconstriction (HPV). Activation of soluble guanylate cyclase and cGMP protein kinase seems to participate in peroxide-elicited relaxation. Endogenous NO helps maintain low pulmonary arterial pressure and suppresses HPV. Multiple redox processes potentially occurring during the progression of pulmonary hypertension may also attenuate NO-mediated relaxation beyond its scavenging by superoxide, including oxidation of guanylate cyclase heme and thiols normally maintained by cytosolic NADPH redox control.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2010.05557.xDOI Listing

Publication Analysis

Top Keywords

hypoxia no-cgmp
8
no-cgmp signaling
8
pulmonary vascular
8
glucose-6-phosphate dehydrogenase
8
guanylate cyclase
8
pulmonary
6
redox
4
redox regulation
4
regulation responses
4
responses hypoxia
4

Similar Publications

Background: Extravillous trophoblasts (EVTs) form stratified columns at the placenta-uterus interface. In the closest part to fetal structures, EVTs have a proliferative phenotype, whereas in the closest part to maternal structures, they present a migratory phenotype. During the placentation process, Connexin 40 (Cx40) participates in both the proliferation and migration of EVTs, which occurs under hypoxia.

View Article and Find Full Text PDF

It remains to be elucidated whether Ca antagonists induce pharmacological preconditioning to protect the heart against ischemia/reperfusion injury. The aim of this study was to determine whether and how pretreatment with a Ca antagonist, azelnidipine, could protect cardiomyocytes against hypoxia/reoxygenation (H/R) injury in vitro. Using HL-1 cardiomyocytes, we studied effects of azelnidipine on NO synthase (NOS) expression, NO production, cell death and apoptosis during H/R.

View Article and Find Full Text PDF

Vascular reactivity is altered in the placentas of fetuses with congenital diaphragmatic hernia.

Placenta

January 2024

Department of Obstetrics and Gynaecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands. Electronic address:

Introduction: Infants with congenital diaphragmatic hernia (CDH) often develop pulmonary hypertension but frequently fail to respond to vasodilator therapy, for instance because of an altered pulmonary vasoreactivity. Investigating such alterations in vivo is impossible. We hypothesised that these alterations are also present in fetoplacental vessels, since both vasculatures are exposed to the same circulating factors (e.

View Article and Find Full Text PDF

The acute and long-term consequences of perinatal asphyxia have been extensively investigated, but only a few studies have focused on postnatal asphyxia. In particular, electrophysiological changes induced in the motor cortex by postnatal asphyxia have not been examined so far, despite the critical involvement of this cortical area in epilepsy. In this study, we exposed primary motor cortex slices obtained from infant rats in an age window (16-18 day-old) characterized by high incidence of hypoxia-induced seizures associated with epileptiform motor behavior to 10 min of hypoxia.

View Article and Find Full Text PDF

Impact of hypoxia on male reproductive functions.

Mol Cell Biochem

April 2023

Anchor Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.

Male reproductive functions, which include testicular steroidogenesis, spermatogenesis, and sexual/erectile functions are key in male fertility, but may be adversely altered by several factors, including hypoxia. This review demonstrates the impact of hypoxia on male reproductive functions. Acute exposure to hypoxia promotes testosterone production via stimulation of autophagy and upregulation of steroidogenic enzymes and voltage-gated L-type calcium channel, nonetheless, chronic exposure to hypoxia impairs steroidogenesis via suppression of the hypothalamic-pituitary-testicular axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!