Phosphate-activated glutaminase in intact pig renal mitochondria was inhibited 50-70% by the sulfhydryl reagents mersalyl and N-ethylmaleimide (0.3-1.0 mM), when assayed at pH 7.4 in the presence of no or low phosphate (10 mM) and glutamine (2 mM). However, sulfhydryl reagents added to intact mitochondria did not inhibit the SH-enzyme beta-hydroxybutyrate dehydrogenase (a marker of the inner face of the inner mitochondrial membrane), but did so upon addition to sonicated mitochondria. This indicates that the sulfhydryl reagents are impermeable to the inner membrane and that regulatory sulfhydryl groups for glutaminase have an external localization here. The inhibition observed when sulfhydryl reagents were added to intact mitochondria could not be attributed to an effect on a phosphate carrier, but evidence was obtained that pig renal mitochondria have also a glutamine transporter, which is inhibited only by mersalyl and not by N-ethylmaleimide. Mersalyl and N-ethylmaleimide showed nondistinguishable effects on the kinetics of glutamine hydrolysis, affecting only the apparent Vmax for glutamine and not the apparent Km calculated from linear Hanes-Woolf plots. Furthermore, both calcium (which activates glutamine hydrolysis), as well as alanine (which has no effect on the hydrolytic rate), inhibited glutamine transport into the mitochondria, indicating that transport of glutamine is not rate-limiting for the glutaminase reaction. Desenzitation to inhibition by mersalyl and N-ethylmaleimide occurred when the assay was performed under optimal conditions for phosphate activated glutaminase (i.e. in the presence of 150 mM phosphate, 20 mM glutamine and at pH 8.6). Desenzitation also occurred when the enzyme was incubated with low concentrations of Triton X-100 which did not affect the rate of glutamine hydrolysis. Following incubation with [14C]glutamine and correction for glutamate in contaminating subcellular particles, the specific activity of [14C]glutamate in the mitochondria was much lower than that of the surrounding incubation medium. This indicates that glutamine-derived glutamate is released from the mitochondria without being mixed with the endogenous pool of glutamate. The results suggest that phosphate-activated glutaminase has a functionally predominant external localization in the inner mitochondrial membrane.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sulfhydryl reagents
16
mersalyl n-ethylmaleimide
16
pig renal
12
phosphate-activated glutaminase
12
external localization
12
inner mitochondrial
12
mitochondrial membrane
12
glutamine hydrolysis
12
glutamine
9
glutaminase functionally
8

Similar Publications

Molecular Design and Mechanism Study of Non-Activated Collectors for Sphalerite (ZnS) Based on Coordination Chemistry Theory and Quantum Chemical Simulation.

Molecules

December 2024

School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

Sphalerite flotation is generally achieved by copper activation followed by xanthate collection. This study aims to propose a design idea to find novel collectors from the perspective of molecular design and prove the theoretical feasibility that the collector can effectively recover sphalerite without copper activation. To address this, 30 compounds containing different structures of sulfur atoms and different neighboring atoms were designed based on coordination chemistry.

View Article and Find Full Text PDF

Harnessing Arsenic Derivatives and Natural Agents for Enhanced Glioblastoma Therapy.

Cells

December 2024

Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan.

Glioblastoma (GBM) is the most common and lethal intracranial tumor in adults. Despite advances in the understanding of the molecular events responsible for disease development and progression, survival rates and mortality statistics for GBM patients have been virtually unchanged for decades and chemotherapeutic drugs used to treat GBM are limited. Arsenic derivatives, known as highly effective anticancer agents for leukemia therapy, has been demonstrated to exhibit cytocidal effects toward GBM cells by inducing cell death, cell cycle arrest, inhibition of migration/invasion, and angiogenesis.

View Article and Find Full Text PDF

This study focused on the interplay between NADPH oxidase 2 (NOX 2) activation and mitochondrial superoxide (mitoO) formation induced by clinically relevant concentrations of arsenic trioxide (ATO; AsO) in acute promyelocytic leukemia (APL) cells. Carefully controlled inhibitor studies and small interfering RNA mediated downregulation of p47 (a component of the NOX 2 complex) expression demonstrated that, in an APL cell line, ATO promotes upstream NOX 2 activation critically connected with the formation of mitoO and with the ensuing mitochondrial permeability transition (MPT)-dependent apoptosis. Instead, acute myeloid leukemia (AML) cell lines respond to ATO with low NOX 2 activation, resulting in a state that is non-permissive for mitoO formation.

View Article and Find Full Text PDF

Transglutaminase (TGase)-mediated cross-linking has gained significant attention due to its potential to reduce the allergenicity of food proteins. This study investigates the effects of TGase cross-linking on allergenicity and conformational modifications in a dual-protein system comprising soy protein isolate (SPI) and β-lactoglobulin (β-LG). The results showed that TGase cross-linking effectively decreased the allergenic potential of both SPI and β-LG, with a more pronounced reduction observed in the allergenicity of soy protein in the dual-protein system.

View Article and Find Full Text PDF

Degradable chiral mesoporous silica nanoparticles and carboxymethyl chitosan/cystamine hydrogels for selective loading and controlled release of S-naproxen.

Int J Biol Macromol

February 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. Electronic address:

Degradable chiral mesoporous silica nanoparticles (DCMSN) are synthesized for selective loading and controlled release of S-naproxen (S-NPX). Chiral silane coupling agent (APTES-L) and degradable silane coupling agent (APTES-CN) are synthesized, respectively, which are used for the synthesis of DCMSN. APTES-L endows the DCMSN with chirality, while APTES-CN endows the DCMSN with degradability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!