Evolution of clinical proteomics and its role in medicine.

J Proteome Res

Office of Cancer Clinical Proteomics Research, Center for Strategic Scientific Initiative, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.

Published: January 2011

Significant progress has been made in characterizing and sequencing genomic alterations of biospecimens from several types of cancer. Understanding the functional changes in the human proteome that arise from the genomic alterations or other factors is the next logical step in the development of high-value protein biomarkers that can be transitioned to clinical studies for biomarker qualification. Linking advances in genomic analysis to proteomic analysis will provide a pathway for qualified biomarkers which can drive the rational development of new diagnostics and therapies. The availability of these multidimensional data to the scientific community sets the stage for the development of new molecularly targeted cancer interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr100532gDOI Listing

Publication Analysis

Top Keywords

genomic alterations
8
evolution clinical
4
clinical proteomics
4
proteomics role
4
role medicine
4
medicine progress
4
progress characterizing
4
characterizing sequencing
4
sequencing genomic
4
alterations biospecimens
4

Similar Publications

Urachal cancer, a rare malignancy, generally presents in the clinical setting with advanced stages of disease. Systemic treatment with chemotherapy is generally utilized in this setting. However, there remains a paucity of data on the effectiveness of immune checkpoint inhibitors or targeted therapies for urachal cancer.

View Article and Find Full Text PDF

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a significant threat to global public health. Despite reports of liver injury during viral disease, the occurrence and detailed mechanisms underlying the development of secondary exogenous liver injury, particularly in relation to changes in metabolic enzymes, remain to be fully elucidated. Therefore, this study was aimed to investigate the mechanisms underlying SARS-CoV-2-induced molecular alterations in hepatic metabolism and the consequent secondary liver injury resulting from alcohol exposure.

View Article and Find Full Text PDF

Background: Gut microbiota disturbance may worsen critical illnesses and is responsible for the progression of multiple organ dysfunction syndrome. In our previous study, there was a trend towards a higher α-diversity of the gut microbiota in sequential feeding (SF) than in continuous feeding (CF) for critically ill patients. We designed this non-blinded, randomized controlled study to confirm these results.

View Article and Find Full Text PDF

Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.

View Article and Find Full Text PDF

DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders.

Am J Hum Genet

January 2025

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany. Electronic address:

BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!