In animal populations, a minority of individuals consistently achieves the highest breeding success and therefore contributes the most recruits to future generations. On average, foraging performance is important in determining breeding success at the population level, but evidence is scarce to show that more successful breeders (better breeders) forage differently than less successful ones (poorer breeders). To test this hypothesis, we used a 10-year, three-colony, individual-based longitudinal data set on breeding success and foraging parameters of a long-lived bird, the Adélie Penguin, Pygoscelis adeliae. Better breeders foraged more efficiently than poorer breeders under harsh environmental conditions and when offspring needs were higher, therefore gaining higher net energy profit to be allocated to reproduction and survival. These results imply that adverse "extrinsic" conditions might select breeding individuals on the basis of their foraging ability. Adélie Penguins show sufficient phenotypic plasticity that at least a portion of the population is capable of surviving and successfully reproducing despite extreme variability in their physical and biological environment, variability that is likely to be associated with climate change and, ultimately, with the species' evolution. This study is the first to demonstrate the importance of "extrinsic" conditions (in terms of environmental conditions and offspring needs) on the relationship between foraging behavior and individual quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/09-0766.1 | DOI Listing |
Vet Microbiol
January 2025
Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Street, Wrocław 50-375, Poland. Electronic address:
The prevalence of obesity within the human population is escalating globally yearly. Obesity constitutes a complex ailment with diverse etiological factors. Recently, the infectious side of obesity aetiology, implicating pathogens such as human adenovirus 36 (HAdV-D36), has gained attention.
View Article and Find Full Text PDFAust Vet J
January 2025
Vetnostics, Macquarie Park, New South Wales, Australia.
Objective: Patient characteristics of Cushing's syndrome differ between countries and have not been assessed in the Australian dog population. This study describes signalment and distribution of adrenocorticotropic hormone (ACTH)-dependent hypercortisolism (ADH) and ACTH-independent hypercortisolism (AIH) in Australian dogs.
Animals: Two-hundred client-owned dogs that had endogenous ACTH concentrations measured by radioimmunoassay.
Avian Pathol
January 2025
College of Animal Science and Technology/Veterinary Medicine, Anhui Agricultural University, Hefei, PR China.
Goose astrovirus (GoAstV) has emerged as a significant pathogen affecting the goose industry in China, with GoAstV-2 becoming the dominant genotype since 2017. This study explores the genetic and structural factors underlying the prevalence of GoAstV-2, focusing on codon usage bias, spike protein variability, and structural stability. Phylogenetic and effective population size analyses revealed that GoAstV-2 experienced rapid expansion between 2017 and 2018, followed by population stabilization.
View Article and Find Full Text PDFNest sharing by birds, or the phenomenon where multiple individuals of different species contribute genetically and parentally to offspring in a single nest, is a rare form of cooperative breeding that has only occasionally been reported in socially monogamous birds. Here we describe, both behaviorally and genetically, the unique case of two female birds, a western kingbird () and a western kingbird × scissor-tailed flycatcher () hybrid, simultaneously occupying (and likely co-incubating eggs in) a single nest. Both females provisioned nestlings, and they did this in two consecutive years (producing four fledglings each year).
View Article and Find Full Text PDFSci Data
January 2025
State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Anisarchus medius (Reinhardt, 1837) is a widely distributed Arctic fish, serving as an indicator of climate change impacts on coastal Arctic ecosystems. This study presents a chromosome-level genome assembly for A. medius using PacBio sequencing and Hi-C technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!