Two families of bacterial heat-labile enterotoxins (HLTs) have been described: the type I HLTs are comprised of cholera toxin (CT) of Vibrio cholerae, LT-I of Escherichia coli, and several related HLTs; the type II HLTs are comprised of LT-IIa and LT-IIb. Herein, we report LT-IIc, a new type II HLT encoded from an enterotoxigenic E. coli (ETEC) strain isolated from an avian host. Using a mouse Y1 adrenal cell bioassay, LT-IIc was shown to be less cytotoxic than CT, LT-IIa, or LT-IIb. Cytotoxicity of LT-IIc was partially neutralized by antisera recognizing LT-IIa or LT-IIb but not by anti-CT antiserum. Genes encoding putative A polypeptide and B polypeptides of LT-IIc were arranged in an operon which was flanked by potential prophage sequences. Analysis of the nucleotide and predicted amino acid sequences demonstrated that the A polypeptide of LT-IIc has moderate homology to the A polypeptides of CT and LT-I and high homology to the A polypeptides of LT-IIa and LT-IIb. The B polypeptide of LT-IIc exhibited no significant homology to the B polypeptides of CT and LT-I and only moderate homology to the B polypeptides of LT-IIa and LT-IIb. The binding pattern of LT-IIc for gangliosides was distinctive from that of either LT-IIa or LT-IIb. The data suggest that other types of the type II HLT subfamily are circulating in the environment and that host specificity of type II HLT is likely governed by changes in the B polypeptide which mediate binding to receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976314 | PMC |
http://dx.doi.org/10.1128/IAI.00730-10 | DOI Listing |
Glycobiology
April 2022
Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, Sweden.
The heat-labile enterotoxins of Escherichia coli and cholera toxin of Vibrio cholerae are related in structure and function. Each of these oligomeric toxins is comprised of one A polypeptide and five B polypeptides. The B-subunits bind to gangliosides, which are followed by uptake into the intoxicated cell and activation of the host's adenylate cyclase by the A-subunits.
View Article and Find Full Text PDFInt J Mol Sci
December 2018
Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA.
Triple negative breast cancer (TNBC) remains a serious health problem with poor prognosis and limited therapeutic options. To discover novel approaches to treat TNBC, we screened cholera toxin (CT) and the members of the bacterial type II heat-labile enterotoxin family (LT-IIa, LT-IIb, and LT-IIc) for cytotoxicity in TNBC cells. Only LT-IIc significantly reduced viability of the TNBC cell lines BT549 and MDA-MB-231 (IC = 82.
View Article and Find Full Text PDFBiochem J
November 2016
Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
The structurally related AB-type heat-labile enterotoxins of Escherichia coli and Vibrio cholerae are classified into two major types. The type I group includes cholera toxin (CT) and E. coli LT-I, whereas the type II subfamily comprises LT-IIa, LT-IIb and LT-IIc.
View Article and Find Full Text PDFClin Vaccine Immunol
December 2015
Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, USA
Type II heat-labile enterotoxins (HLTs) constitute a promising set of adjuvants that have been shown to enhance humoral and cellular immune responses when coadministered with an array of different proteins, including several pathogen-associated antigens. However, the adjuvant activities of the four best-studied HLTs, LT-IIa, LT-IIb, LT-IIb(T13I), and LT-IIc, have never been compared side by side. We therefore conducted immunization studies in which LT-IIa, LT-IIb, LT-IIb(T13I), and LT-IIc were coadministered by the intradermal route to mice with two clinically relevant protein subunit vaccine antigens derived from the enzymatic A subunit (RTA) of ricin toxin, RiVax and RVEc.
View Article and Find Full Text PDFGlycobiology
January 2013
Division of Infectious Disease (151), Department of Veterans Affairs Western New York Healthcare System, State University of New York at Buffalo School of Medicine, 3495 Bailey Avenue, Buffalo, NY 14215, USA.
Bacterial heat-labile (LT) enterotoxins signal through tightly regulated interactions with host cell gangliosides. LT-IIa and LT-IIb of Escherichia coli bind preferentially to gangliosides with a NeuAcα2-3Galβ1-3GalNAc terminus, with key distinctions in specificity. LT-IIc, a newly discovered E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!