Role of heme oxygenase in preserving vascular bioactive NO.

Nitric Oxide

Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan 570-749, Republic of Korea.

Published: December 2010

Beyond its vasodilator role, vascular nitric oxide (NO), which is synthesized by endothelial NO synthase (eNOS) via its activation, has been shown to play a number of other beneficial roles in the vascular system; it inhibits proliferation of vascular smooth muscle cells, prevents platelet aggregation, and regulates endothelial apoptosis. Such beneficial roles have been shown to be implicated in the regulation of endothelial functions. A loss of NO bioavailability that may result either from decreased eNOS expression and activity or from increased NO degradation is associated with endothelial dysfunction, a key factor in the development of vascular diseases. Heme oxygenase-1 (HO-1), an inducible enzyme, catalyzes the oxidative degradation of heme to free iron, carbon monoxide, and biliverdin, the latter being subsequently converted into bilirubin. In the vascular system, HO-1 and heme degradation products perform important physiological functions, which are ultimately linked to the protection of vascular cells. Studies have shown that HO-1 and heme degradation products exert vasodilatory, antioxidant, anti-inflammatory, antiproliferative and anti-apoptotic effects on vascular cells. Interestingly, these effects of HO-1 and its by-products are similar, at least in part, to those of eNOS-derived NO; this similarity may prompt investigators to study a possible relationship between eNOS-derived NO and HO-1 pathways. Many studies have been reported, and accumulating evidence suggests that HO-1 and heme degradation products can improve vascular function, at least in part, by compensating for the loss of NO bioavailability. This paper will provide the possible pathway explaining how HO-1 and heme degradation products can preserve vascular NO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2010.08.002DOI Listing

Publication Analysis

Top Keywords

ho-1 heme
16
heme degradation
16
degradation products
16
vascular
10
beneficial roles
8
vascular system
8
loss bioavailability
8
vascular cells
8
ho-1
7
degradation
6

Similar Publications

Dietary contamination with aflatoxin B (AFB), which can lead to severe liver damage, poses a great threat to livestock and poultry breeding and has detrimental impacts on food safety. Selenomethionine (SeMet), with anti-inflammatory, antioxidative, and detoxifying effects, is regarded as a beneficial food additive. However, whether SeMet can reduce AFB-induced liver injury and intestinal microbial disorders in rabbits remains to be revealed.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a monomer of plastic that can leach into water from scratched containers when used for an extended period. Arsenic (As) is an environmental toxicant, and people are exposed to both arsenic and BPA through drinking water and through scratched plastic containers used in contaminated areas. However, the combined effects of As and BPA on locomotor performance and neurobehavioral changes are yet to be investigated.

View Article and Find Full Text PDF

Background: Alcoholic liver disease (ALD) is a significant global health concern, primarily resulting from chronic alcohol consumption, with oxidative stress as a key driver. The ethyl acetate extract of (CGE) exhibits antioxidant and hepatoprotective properties, but its detailed mechanism of action against ALD remains unclear. This study investigates the effects and mechanisms of CGE in alleviating alcohol-induced oxidative stress and liver injury.

View Article and Find Full Text PDF

This study aims to reveal the potential molecular mechanisms of modified Gegen Qinlian decoction (MGQD) in relieving ulcerative colitis (UC). C57BL/6J mice were used to establish experimental colitis via dextran sodium sulfate (DSS). Body weight, disease activity index (DAI), spleen weight, colon length, and histopathologic features were measured to evaluate the therapeutic effects of MGQD on mice with UC.

View Article and Find Full Text PDF

Self-assembled HO-1i-Pt(IV) nanomedicine targeting p38/MAPK and MDR pathways for cancer chemo-immunotherapy.

J Control Release

January 2025

Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China. Electronic address:

Platinum(II)-based antitumor drugs are widely used in clinics but limited by severe side effects and resistance. Multi-target Platinum(IV) complexes are emerging as ideal alternatives. Heme oxygenase-1 (HO-1) works as a rate-limiting step in heme degradation and is overexpressed in malignant tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!