Information on the structural characteristics and inhibitory activity of the pacifastin family is restricted to a handful of locust pacifastin-related inhibitors. In this report the optimization of a bacterial recombinant expression system is described, resulting in the high yield production of pacifastin-like inhibitors of the desert locust. Subsequently, the relative inhibitory activity of these peptides towards mammalian, locust and caterpillar digestive peptidases has been compared. In general, the enzyme specificity of locust pacifastin-like inhibitors towards trypsin- or chymotrypsin-like peptidases corresponds to the nature of the P1-residue at the reactive site. In addition, other structural characteristics, including specific core interactions, have been reported to result in a different affinity of pacifastin members towards digestive trypsin-like enzymes from mammals and arthropods. One remarkable observation in this study is a specifically designed pacifastin-like peptidase inhibitor, which, unlike other inhibitors of the same family, does not display this specificity and selectivity towards digestive enzymes from different animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2010.08.006 | DOI Listing |
Fish Shellfish Immunol
March 2015
School of Marine Science, Ningbo University, Ningbo 315211, China.
Pacifastin-related inhibitor is a new family of serine protease inhibitors that regulate the proteolytic cascade in multiple biological processes. Contrary to the knowledge on the structure and inhibitory mechanism of pacifastin-like members in locust, very little is known about their functions. Here, we report the inhibitory activities in relation to the structural characteristics of pacifastin light chain (PtPLC) gene identified from the swimming crab Portunus trituberculatus.
View Article and Find Full Text PDFPeptides
March 2012
Department of Animal Physiology and Neurobiology, Zoological Institute K.U. Leuven, Leuven, Belgium.
The main reason for the varying degrees of success of peptidase inhibitors (PI) as biological insecticides is the existence of a poorly understood mechanism, which allows pest insects to compensate for PI present in their diet. To challenge this highly flexible physiological mechanism and to prolong the inhibitory effect of PI on insect growth, a number of measures were taken into account before and during experiments with a notorious pest insect, the desert locust, Schistocerca gregaria: (i) non-plant PI (pacifastin-related inhibitors) were used to reduce the risk of a specific co-evolutionary adaptation of the pest insect, (ii) based on the main types of digestive enzymes present in the midgut, mixtures of multiple PI with different enzyme specificity were selected, allowing for a maximal inhibition of the proteolytic activity and (iii) digestive peptidase samples were taken during oral administration experiments to study compensatory mechanisms. Contrary to larvae fed on a diet containing plant-derived PI, a significant growth impediment was observed in larvae that were fed a mixture of different pacifastin-like PI.
View Article and Find Full Text PDFPeptides
March 2011
Department of Animal Physiology and Neurobiology, Zoological Institute K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
Information on the structural characteristics and inhibitory activity of the pacifastin family is restricted to a handful of locust pacifastin-related inhibitors. In this report the optimization of a bacterial recombinant expression system is described, resulting in the high yield production of pacifastin-like inhibitors of the desert locust. Subsequently, the relative inhibitory activity of these peptides towards mammalian, locust and caterpillar digestive peptidases has been compared.
View Article and Find Full Text PDFPeptides
July 2010
Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio 100, Zip Code 04044-020, São Paulo, SP, Brazil.
Pacifastin-like protease inhibitors belong to a recent classified protease inhibitor family and they are the smallest protease inhibitors described in animals. In this work, we purified and characterized, for the first time, two neutrophil elastase inhibitors belonging to the pacifastin family from the blood sucking insect Triatoma infestans eggs. The inhibitors showed the same N-terminal sequences, molecular masses of 4257 and 4024Da by MALDI-TOF mass spectrometry and dissociation constants (Ki) for neutrophil elastase of 0.
View Article and Find Full Text PDFBMC Evol Biol
May 2009
Department of Animal Physiology and Neurobiology, Zoological Institute K.U.Leuven, Leuven, Belgium.
Background: Members of the pacifastin family are serine peptidase inhibitors, most of which are produced as multi domain precursor proteins. Structural and biochemical characteristics of insect pacifastin-like peptides have been studied intensively, but only one inhibitor has been functionally characterised. Recent sequencing projects of metazoan genomes have created an unprecedented opportunity to explore the distribution, evolution and functional diversification of pacifastin genes in the animal kingdom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!